3.(2009年山东卷)设P是△ABC所在平面内的一点,+=2,则
( )
A.+=0 B.+=0
C.+=0 D.++=0
[解析] 因为+=2,
所以点P为线段AC的中点,故选B.
![]()
[答案] B
2.在四边形ABCD中,=a+2b,=-4a-b,=-5a-3b,则四边形ABCD的形状是
( )
A.矩形 B.平行四边形
C.梯形 D.以上都不对
[解析] 由已知=++=-8a-2b=2(-4a-b)=2.
∴∥,又与不平行,
∴四边形ABCD是梯形.
[答案] C
1.下列等式不正确的是
( )
A.a+0=a B.a+b=b+a
C.+≠0 D.=++
[解析] 解法1:∵与为相反向量,
∴+=0,∴C不正确.
解法2:+=(-)+(-)
=--+=0.∴C不正确.
[答案] C
23.(本小题满分10分)
一个袋中装有黑球,白球和红球共n(
)个,这些球除颜色外完全相同.已知从袋中任意摸出1个球,得到黑球的概率是
.现从袋中任意摸出2个球.
(1)若n=15,且摸出的2个球中至少有1个白球的概率是
,设
表示摸出的2个球中红球的个数,求随机变量
的概率分布及数学期望
;
(2)当n取何值时,摸出的2个球中至少有1个黑球的概率最大,最大概率为多少?
22.
(本小题满分10分)
如图,在直三棱柱
中,
,AB=AC=a,
,点E,F分别在棱
,
上,且
,
.设
.
(1)当
=3时,求异面直线
与
所成角的大小;
(2)当平面
⊥平面
时,求
的值.
21.[选做题]在A、B、C、D 四小题中只能选做两题,每小题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
A.选修4-1:几何证明选讲
如图,在梯形
中,
∥BC,点
,
分别在边
,
上,设
与
相交于点
,若
,
,
,
四点共圆,求证:
.
B.选修4-2:矩阵与变换
已知矩阵
=
,求
的特征值
,
及对应的特征向量
.
C.选修4-4:坐标系与参数方程
已知曲线
的方程
,设
,
为参数,求曲线
的参数方程.
D.选修4-5:不等式选讲
设实数
满足
,求
的最小值,并求此时
的值.
[必做题]第22题、第23题,每题10分,共计20分.请在答题卡指定区域内作答,解答时应写出文字说明、证明过程或演算步骤.
20. [解]:(1)当
时,
![]()
…………(2分)
当
时,
,
在
内单调递增;
当
时,
恒成立,故
在
内单调递增;
的单调增区间为
。
…………(6分)
(2)①当
时,
,![]()
![]()
,
恒成立,
在
上增函数。
故当
时,
。
…………8分)
②当
时,
,
![]()
![]()
(Ⅰ)当
,即
时,
在
时为正数,所以
在区间
上为增函数。故当
时,
,且此时
…………(10分)
(Ⅱ)当
,即
时,
在
时为负数,在
时为正数,所以
在区间
上为减函数,在
上为增函数。故当
时,
,且此时
。
…………(12分)
(Ⅲ)当
,即
时,
在
进为负数,所以
在区间
上为减函数,故当
时,
。
…………(14分)
所以函数
的最小值为
。
由条件得
此时
;或
,此时
;或
,此时无解。
综上,
。
…………(16分)
数学Ⅱ(附加题)
20.(本小题满分16分)设
,函数
.
(Ⅰ)当
时,求函数
的单调增区间;
(Ⅱ)若
时,不等式
恒成立,实数
的取值范围..
19.(本小题满分16分)
在一个特定时段内,以点E为中心的7海里以内海域被设为警戒水域.点E正北55海里处有一个雷达观测站A.某时刻测得一艘匀速直线行驶的船只位于点A北偏东
且与点A相距40
海里的位置B,经过40分钟又测得该船已行驶到点A北偏东
+
(其中sin
=
,
)且与点A相距10
海里的位置C.
(1)求该船的行驶速度(单位:海里/时);
(I2)若该船不改变航行方向继续行驶.判断它是否会进入警戒水域,并说明理由.
19解 (1)如图,AB=40
,AC=10
,![]()
由于0<
<
,所以cos
=
……………………………2分
由余弦定理得BC=
……………………6分
所以船的行驶速度为
(海里/小时). ……………………………8分
(2)解法一 如图所示,以A为原点建立平面直角坐标系,设点B、C的坐标分别是
B(x1,y2),
C(x1,y2),BC与x轴的交点为D.
由题设有,x1=y1=
![]()
AB=40, ……10分
x2=ACcos
.
……12分
所以过点B、C的直线l的斜率k=
,直线l的方程为y=2x-40.
又点E(0,-55)到直线l的距离d=
…………15分
所以船会进入警戒水域. ……………………………16 分
解法二 如图所示,设直线AE与BC的延长线相交于点Q.在△ABC中,
由余弦定理得,![]()
==
=
.…………10 分
从而![]()
![]()
在
中,由正弦定理得,
AQ=![]()
…………12分
由于AE=55>40=AQ,所以点Q位于点A和点E之间,且QE=AE-AQ=15.过点E作EP
BC于点P,则EP为点E到直线BC的距离.
在Rt
中,
PE=QE·sin![]()
=
………………………15 分
所以船会进入警戒水域. ………………………16 分
18. 解:(1)设点
,依题意,有
. ----------2分
整理,得
.
所以动点
的轨迹
的方程为
. -------------5分
(3)由题意:设N
,A
,则B
,
---------------7分
=![]()
=![]()
=
为定值。-----------------------------10分设
(2)M
,则切线MQ的方程为:![]()
由
得Q
------------12分
, ![]()
![]()
![]()
=
----------15分
所以:![]()
即MF与OQ始终保持垂直关系 -------------16分
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com