精英家教网 > 初中数学 > 题目详情

如图,已知△ABC中,AB=AC,点E、F在边BC上,满足∠EAF=∠C,求证:BF•CE=AB2

证明:∵∠AFB=∠C+∠FAC=∠EAF+∠FAC=∠EAC,
又∵AB=AC,
∴∠B=∠C,即∠ABF=∠ECA,
∴△ABF∽△ECA,

∴BF•EC=AB•AC=AB2
分析:利用两角对应成比例可得△ABF∽△ECA,对应边成比例可得相应的比例式,整理可得所求的乘积式.
点评:考查相似三角形的判定与性质的应用;利用所给乘积式判断出应证明哪两个三角形相似是解决本题的突破点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知△ABC中,AB=AC,E、F分别在AB、AC上且AE=CF.
求证:EF≥
12
BC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,P是AB上一点,连接CP,以下条件不能判定△ACP∽△ABC的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•梓潼县一模)如图,已知△ABC中,∠C=90°,AC=4,BC=3,则sinA=(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,BC=8,BC边上的高h=4,D为BC上一点,EF∥BC交AB于E,交AC于F(EF不过A、B),设E到BC的距离为x,△DEF的面积为y,那么y关于x的函数图象大致是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知△ABC中,AB=AC,D是BC中点,则下列结论不正确的是(  )

查看答案和解析>>

同步练习册答案