精英家教网 > 初中数学 > 题目详情

已知点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,若AC⊥BD,且AC≠BD,则四边形EFGH的形状是________(填“梯形”“矩形”或“菱形”)

矩形
分析:四边形EFGH为矩形,理由为:由E和H分别为AB与AD的中点,得到EH为三角形ABD的中位线,根据三角形中位线定理得到HE平行于BD且等于BD的一半,同理GF为三角形BCD的中位线,得到GF平行于BD且等于BD的一半,可得出HE与GF平行且相等,得到四边形EFGH为平行四边形,同理得到HM平行于ON,HN平行于OM,得到四边形HMON为平行四边形,又AC与BD垂直得到∠MON为直角,可得出HMON为矩形,根据矩形的性质得到∠EHG为直角,可得出四边形EFGH为矩形.
解答:四边形EFGH的形状是矩形,理由为:
根据题意画出图形,如图所示:
∵点E,F,G,H分别是四边形ABCD的边AB,BC,CD,DA的中点,
∴EH为△ABD的中位线,FG为△BCD的中位线,
∴EH=BD,EH∥BD,FG=BD,FG∥BD,
∴EH=FG,EH∥FG,
∴四边形EFGH为平行四边形,
又HG为△ACD的中位线,
∴HG∥AC,又HE∥BD,
∴四边形HMON为平行四边形,
又AC⊥BD,即∠AOD=90°,
∴四边形HMON为矩形,
∴∠EHG=90°,
∴四边形EFGH为矩形.
故答案为:矩形.
点评:此题考查了三角形的中位线定理,平行四边形的判定与性质,以及矩形的判定与性质,熟练掌握三角形中位线定理是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

5、已知点A(m,2m)和点B(3,m2-3),直线AB平行于x轴,则m等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,已知点A,B,C在⊙O上,AC∥OB,∠BOC=40°,则∠ABO=
20
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,已知点A1,A2,A3是抛物线y=
1
2
x2上的三点,线段A1B1,A2B2,A3B3都垂直于x轴,垂足分别为点B1,B2,B3,延长线段B2A2交线段A1A3于点C.
(1)在图(1)中,若点A1,A2,A3的横坐标依次为1,2,3,求线段CA2的长;
(2)若将抛物线改为y=
1
2
x2-x+1,如图2,点A1,A精英家教网2,A3的横坐标依次为三个连续整数,其他条件不变,求线段CA2的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

24、对于点O、M,点M沿MO的方向运动到O左转弯继续运动到N,使OM=ON,且OM⊥ON,这一过程称为M点关于O点完成一次“左转弯运动”.正方形ABCD和点P,P点关于A左转弯运动到P1,P1关于B左转弯运动到P2,P2关于C左转弯运动到P3,P3关于D左转弯运动到P4,P4关于A左转弯运动到P5,….
(1)请你在图中用直尺和圆规在图中确定点P1的位置;
(2)连接P1A、P1B,判断△ABP1与△ADP之间有怎样的关系?并说明理由.
(3)以D为原点、直线AD为y轴建立直角坐标系,并且已知点B在第二象限,A、P两点的坐标为(0,4)、(1,1),请你推断:P4、P2009、P2010三点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知点A(0,2)、B(4,0),点C、D分别在直线x=1与x=2上,且CD∥x轴,则AC+CD+DB的最小值为
 

查看答案和解析>>

同步练习册答案