精英家教网 > 初中数学 > 题目详情

如图平行四边形ABCD中,∠C=90度,沿着直线BD折叠,使点C落在C′处,BC′交AD于E,AD=16,AB=8,则DE的长________.

10
分析:先根据有一个角是直角的平行四边形是矩形判定四边形ABCD是矩形,得出∠A=90°,再由翻折变换的性质得出∠CBD=∠C′BD,根据平行线的性质得出∠ADB=∠CBD,进而得出BE=DE,然后设DE=x,则BE=x,AE=16-x,在Rt△ABE中利用勾股定理求出x的值即可.
解答:∵平行四边形ABCD中,∠C=90度,
∴平行四边形ABCD是矩形,
∴∠A=90°,AD∥BC.
∵Rt△DC′B由Rt△DBC翻折而成,
∴∠CBD=∠C′BD.
∵AD∥BC,
∴∠ADB=∠CBD,
∴∠ADB=∠C′BD,
∴BE=DE.
设DE=x,则BE=x,AE=16-x,
在Rt△ABE中,∠A=90°,
∴AB2+AE2=BE2,即82+(16-x)2=x2
解得x=10,即DE=10.
故答案为10.
点评:本题考查了矩形的判定与性质,翻折变换的性质及勾股定理,难度适中.解此类题时,我们常常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2
(1)求证:D是EC中点;
(2)求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=3,BC=5,∠A=100°,
求:(1)∠ABE的度数;
(2)DE的长.

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏淮安平桥中学初三10月月考数学试卷(解析版) 题型:填空题

如图,平行四边形ABCD中, ∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为    ★    

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图平行四边形ABCD中,∠ABC=60°,点E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BF,垂足为点F,DF=2
(1)求证:D是EC中点;
(2)求FC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图平行四边形ABCD中,∠ABC的平分线交AD于点E,AB=3,BC=5,∠A=100°,
求:(1)∠ABE的度数;
(2)DE的长.

查看答案和解析>>

同步练习册答案