精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,数学公式数学公式相等,OD⊥BC,OE⊥AC,垂足分别为D、E,且OD=OE,那么△ABC是什么三角形,为什么?

解:△ABC为等边三角形.理由如下:
连OC,
=
∴AB=BC,
∵OD⊥BC,OE⊥AC,
∴CE=AC,CD=BC,∠ODC=∠OEC=90°
∵在Rt△ODC和Rt△OEC中,

∴Rt△ODC≌Rt△OEC(HL)
∴CD=CE,
∴BC=AC,
∴AB=AC=CB,
∴△ABC为等边三角形.
分析:根据圆心角、弧、弦的关系由=得到AB=BC,再由OD⊥BC,OE⊥AC,根据垂径定理和垂直的定义得到CE=AC,CD=BC,∠ODC=∠OEC=90°利用三角形全等的判定方法可得到Rt△ODC≌Rt△OEC(HL),则CD=CE,于是有BC=AC,则AB=AC=CB,即可得到△ABC为等边三角形.
点评:本题考查了圆心角、弧、弦的关系:在同圆或等圆中两个圆心角、两条弧、两条弦中有一组量相等,那么其余各组量也分别相等.也考查了垂径定理和等边三角形的判定.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ABC=30°,AB=10,那么以A为圆心,6为半径的⊙A与直线BC的位置关系是(  )
A、相交B、相切C、相离D、不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△OAB中放置了3个圆,它们与相邻的三角形的边相切,与相邻的圆相外切,已知最大圆与最小圆的半径分别是4、2,那么中间的圆的半径是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:在△OAB中放置了3个圆,它们与三角形的边相切,与相邻的圆相外切,已知最大圆与最小圆的半径分别是4、2,那么中间的圆的半径是(  )
A、3
B、2
2
C、2.8
D、不确定

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•建邺区一模)如图,在△ABC中,AB=AC=10,BC=16,M为BC的中点.⊙A的半径为3,动点O从点B出发沿BC方向以每秒1个单位的速度向点C运动,设运动时间为t秒.
(1)当以OB为半径的⊙O与⊙A相切时,求t的值;
(2)探究:在线段BC上是否存在点O,使得⊙O与直线AM相切,且与⊙A相外切?若存在,求出此时t的值及相应的⊙O的半径;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,AC=3
3
,DC=3,O是边AB上一动点(O与点A和B不重合),以OA为半径的⊙O与AB相交于点E.
(1)若⊙O经过点D,求证:BC与⊙O相切;
(2)试求在(1)中⊙O的半径OA的长度;
(3)请分别写出⊙O与BC所在直线相交和相离时OA的取值范围.

查看答案和解析>>

同步练习册答案