精英家教网 > 初中数学 > 题目详情

任画一个等边三角形,分别作出该三角形绕其某一顶点逆时针旋转60°,120°,180°,240°,300°后的图形,观察所作的图形,可知得到了一个     形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.
Ⅰ、证明:△BDG≌△CEF;
Ⅱ、探究:怎样在铁片上准确地画出正方形.
小聪和小明各给出了一种想法,请你在Ⅱa和Ⅱb的两个问题中选择一个你喜欢的问题解答.如果两题都解,只以Ⅱa的解答记分.
Ⅱa、小聪想:要画出正方形DEFG,只要能计算出正方形的边长就能求出BD和CE的长,从而确定D点和E点,再画正方形DEFG就容易了.
设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果用含根号的式子表示,不要求分母有理化)
Ⅱb、小明想:不求正方形的边长也能画出正方形.具体作法是:
①在AB边上任取一点G′,如图作正方形G′D′E′F′;
②连接BF′并延长交AC于F;
③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四精英家教网边形DEFG即为所求.
你认为小明的作法正确吗?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【问题】在正方形网格中,如图(一),△OAB的顶点分别为O(0,0),A(1,2),B(2,-1).
(1)以点O(0,0)为位似中心,按比例尺3:1在位似中心的同侧将△OAB放大为△OA′B′,放大后点A、B的对应点分别为A′、B′.画出△OA′B′,并写出点A'、B'的坐标:A′(
3
3
6
6
),B′(
6
6
-3
-3
);
(2)在(1)中,若点C(a,b)为线段AB上任一点,写出变化后点C的对应点C′的坐标(
3a
3a
3b
3b
);
【拓展】在平面内,先将一个多边形以点O为位似中心放大或缩小,使所得多边形与原多边形对应线段的比为k,并且原多边形上的任一点P,它的对应点P'在线段OP或其延长线上;接着将所得多边形以点O为旋转中心,逆时针旋转一个角度θ,这种经过和旋转的图形变换叫做旋转相似变换,记为O(k,θ),其中点O叫做旋转相似中心,k叫做相似比,θ叫做旋转角.
【探索】如图(二),完成下列问题:
(3)填空:如图1,将△ABC以点A为旋转相似中心,放大为原来的2倍,再逆时针旋转60°,得到△ADE,这个旋转相似变换记为A(
2
2
60°
60°
);
(4)如图2,△ABC是边长为3cm的等边三角形,将它作旋转相似变换A(
43
,90°)
,得到△ADE,求线段BD的长.

查看答案和解析>>

科目:初中数学 来源:2012年辽宁省建平县八年级单科数学竞赛卷(解析版) 题型:解答题

任画一个直角三角形,分别以它的三条边为边向外做等边三角形,

要求:(1)画出图形;

(2)探究这三个等边三角形面积之间的关系,并说明理由.

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年福建省福安市九年级中考模拟考试数学试卷(解析版) 题型:解答题

△ABC是一块等边三角形的废铁片,利用其剪裁一个正方形DEFG,使正方形的一条边DE落在BC上,顶点F、G分别落在AC、AB上.

(1) 证明:△BDG≌△CEF;

(2) 设△ABC的边长为2,请你帮小聪求出正方形的边长.(结果精确到十分位)

(3) 小颖想:不求正方形的边长我也能画出正方形.具体作法是:如图3

 ①在AB边上任取一点G′,如图作正方形G′D′E′F′;

 ②连接BF′并延长交AC于F;

 ③作FE∥F′E′交BC于E,FG∥F′G′交AB于G,GD∥G′D′交BC于D,则四边形DEFG即为所求.你认为小颖的作法正确吗?请说明理由.

 

查看答案和解析>>

同步练习册答案