精英家教网 > 初中数学 > 题目详情

设直线y=ax+2与函数y=|x-1|-|x-2|+2的图象交于三个不同的点,求常数a的取值范围.

解:①当x≥2时,y=x-1-x+2+2=3;
②当x≤1时,y=-x+1+x-2+2=1;
③当2>x>1时,y=x-1+x-2+2=2x-1;
故图象如下图所示,
当y=ax+2与x轴平行时,a=0,当y=ax+2过点(2,3)时,a=
∴a的取值范围为:0<a<
分析:将函数y=|x-1|-|x-2|+2根据x的取值范围去掉绝对值,画出函数图形,再与直线y=ax+2联立即可求解.
点评:本题考查了两条直线相交或平行问题,难度较大,关键是分类讨论后画出函数图象进行解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),AB⊥x轴于B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-
3
2
).
①求直线y=ax+b关系式;
②设直线y=ax+b与x轴交于M,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=x2-(a+b)x+
c2
4
,其中a、b、c分别为△ABC中∠A,∠B,∠C的对边.
(1)求证:该抛物线与x轴必有两个不同的交点;
(2)设抛物线与x轴的两个交点为P、Q,顶点为R,且∠PQR=α,tanα=
5
,若△ABC的周长为10,求抛物线的解析式;
(3)设直线y=ax-bc与抛物线y=x2-(a+b)x+
c2
4
交于点E、F,与y轴交于点M,且抛物线对称轴为x=a,O是坐标原点,△MOE与△MOF的面积之比为5:1,试判断△ABC的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,已知反比例函数y=
k
x
的图象经过第二象限内的点A(-1,m),AB⊥x轴于点B,△AOB的面积为2.若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,一2).
(1)求直线y=ax+b的解析式;
(2)设直线y=ax+b与x轴交于点M,求AM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),作AB⊥x轴于点B,Rt△AOB面积为3.
(1)求k和m的值;
(2)若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(4,-
3
2

①求直线y=ax+b关系式;
②设直线y=ax+b与x轴交于M,求AM的长;
③根据图象写出使反比例函数y=
k
x
值大于一次函数y=ax+b的值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
图象过第二象限内的点A(-2,m),作AB⊥x轴于B,Rt△AOB面积为3;若直线y=ax+b经过点A,并且经过反比例函数y=
k
x
的图象上另一点C(n,-1).
(1)反比例函数的解析式为
y=-
6
x
y=-
6
x
,m=
3
3
,n=
6
6

(2)求直线y=ax+b的解析式;
(3)设直线y=ax+b与x轴交于M,求AM的长;
(4)根据图象写出使反比例函数y=
k
x
值大于一次函数y=ax+b的值的x的取值范围.

查看答案和解析>>

同步练习册答案