精英家教网 > 初中数学 > 题目详情
已知关于x的一元二次方程(m+1)x2-2(m+1)x+m-1=0.
(1)当m取何值时,方程有两个实数根?
(2)设x1、x2是方程的两个实数根,且满足
x21
x2+x1
x22
=1-m
,求m的值.
(1)依题意得:
m+1≠0
△=[2(m+1)]2-4(m+1)(m-1)≥0

解得:m>-1;
(2)由根与系数的关系,得
x1+x2=2
x1x2=
m-1
m+1

x21
x2+x1
x22
=1-m

=x1x2(x1+x2),
=2×
m-1
m+1

=1-m,
整理,得m2+2m-3=0,
解得m1=1,m2=-3,
∵m>-1,
∴m=-3不合题意,舍去,
∴m=1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知关于x的一元二次x2+(2k-3)x+k2=0的两个实数根x1,x2且x1+x2=x1x2,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
32

(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的一元二次x2-6x+k+1=0的两个实数根x1,x2
1
x1
+
1
x2
=1
,则k的值是(  )
A、8B、-7C、6D、5

查看答案和解析>>

科目:初中数学 来源:第23章《一元二次方程》中考题集(23):23.3 实践与探索(解析版) 题型:解答题

已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

科目:初中数学 来源:2007年全国中考数学试题汇编《一元二次方程》(04)(解析版) 题型:解答题

(2007•汕头)已知关于x的一元二次2x2-(2m2-1)x-m-4=0有一个实数根为
(1)求m的值;
(2)求已知方程所有不同的可能根的平方和.

查看答案和解析>>

同步练习册答案