精英家教网 > 初中数学 > 题目详情

如图,D、E分别是△ABC的边AB、AC上的点,连接DE,要使△ADE∽△ACB,还需添加一个条件________(只需写一个).

此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等
分析:由∠A是公共角,利用有两角对应相等的三角形相似,即可得可以添加∠ADE=∠C或∠AED=∠B;又由两组对应边的比相等且夹角对应相等的两个三角形相似,即可得D可以添加AD:AC=AE:AB或AD•AB=AE•AC,继而求得答案.
解答:∵∠A是公共角,
∴当∠ADE=∠C或∠AED=∠B时,△ADE∽△ACB(有两角对应相等的三角形相似),
当AD:AC=AE:AB或AD•AB=AE•AC时,△ADE∽△ACB(两组对应边的比相等且夹角对应相等的两个三角形相似),
∴要使△ADE∽△ACB,还需添加一个条件:答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.
故答案为:此题答案不唯一,如∠ADE=∠C或∠AED=∠B或AD:AC=AE:AB或AD•AB=AE•AC等.
点评:此题考查了相似三角形的判定.此题属于开放题,难度不大,注意掌握有两角对应相等的三角形相似与两组对应边的比相等且夹角对应相等的两个三角形相似定理的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,E、F分别是等腰△ABC的腰AB、AC的中点.用尺规在BC边上求作一点M,使四边形AEMF为菱形.
(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图:AB、AC分别是⊙O的直径和弦,D为弧AC上一点,DE⊥AB于点H,交⊙O于点E,交AC于点F.P为ED延长线上一点,连PC.
(1)若PC与⊙O相切,判断△PCF的形状,并证明.
(2)若D为弧AC的中点,且
BC
AB
=
3
5
,DH=8,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB和AC分别是⊙O的直径和弦,OD⊥AC于D点,若OA=4,∠A=30°,则BD等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,E、F分别是正方形ABCD边BC、AD上的点,且BE=DF
求证:(1)△ABE≌△CDF;
      (2)AE∥CF.

查看答案和解析>>

科目:初中数学 来源: 题型:

桌上放着一个圆柱和一个长方体,如图(1),请说出下列三幅图(如图(2))分别是从哪个方向看到的.

查看答案和解析>>

同步练习册答案