精英家教网 > 初中数学 > 题目详情
(2004•吉林)不等式2(x-2)≤x-2的非负整数解的个数为( )
A.1
B.2
C.3
D.4
【答案】分析:先求出不等式的解集,然后求其非负整数解.
解答:解:解不等式2(x-2)≤x-2得x≤2,
因而非负整数解是0,1,2共3个.
故选C.
点评:熟练掌握不等式的基本性质,正确求出不等式的解集,是解此题的关键.解不等式要用到不等式的性质:
(1)不等式的两边加(或减)同一个数(或式子),不等号的方向不变;
(2)不等式两边乘(或除以)同一个正数,不等号的方向不变;
(3)不等式的两边乘(或除以)同一个负数,不等号的方向改变.
练习册系列答案
相关习题

科目:初中数学 来源:2004年全国中考数学试题汇编《二次函数》(05)(解析版) 题型:解答题

(2004•吉林)已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目:初中数学 来源:2004年全国中考数学试题汇编《一次函数》(04)(解析版) 题型:解答题

(2004•吉林)如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)
(2)某人身高为196cm,一般情况下他的指距应是多少?

查看答案和解析>>

科目:初中数学 来源:2004年吉林省中考数学试卷(解析版) 题型:解答题

(2004•吉林)已知抛物线L:y=ax2+bx+c(其中a、b、c都不等于0),它的顶点P的坐标是,与y轴的交点是M(0,c).我们称以M为顶点,对称轴是y轴且过点P的抛物线为抛物线L的伴随抛物线,直线PM为L的伴随直线.
(1)请直接写出抛物线y=2x2-4x+1的伴随抛物线和伴随直线的解析式:
伴随抛物线的解析式 ______,伴随直线的解析式 ______;
(2)若一条抛物线的伴随抛物线和伴随直线分别是y=-x2-3和y=-x-3,则这条抛物线的解析式是 ______;
(3)求抛物线L:y=ax2+bx+c(其中a、b、c都不等于0)的伴随抛物线和伴随直线的解析式;
(4)若抛物线L与x轴交于A(x1,0)、B(x2,0)两点,x2>x1>0,它的伴随抛物线与x轴交于C、D两点,且AB=CD.请求出a、b、c应满足的条件.

查看答案和解析>>

科目:初中数学 来源:2004年吉林省中考数学试卷(解析版) 题型:解答题

(2004•吉林)如图,大拇指与小拇指尽量张开时,两指尖的距离称为指距.某项研究表明,一般情况下人的身高h是指距d的一次函数.下表是测得的指距与身高的一组数据:
指距d(cm)20212223
身高h(cm)160169178187
(1)求出h与d之间的函数关系式;(不要求写出自变量d的取值范围)
(2)某人身高为196cm,一般情况下他的指距应是多少?

查看答案和解析>>

科目:初中数学 来源:2010年中考数学创新思维训练(二)(解析版) 题型:解答题

(2004•吉林)如图,正方形ABCD的边长为12,划分成12×12个小正方形格.将边长为n(n为整数,且2≤n≤11)的黑白两色正方形纸片按图中的方式黑白相间地摆放,第一张n×n的纸片正好盖住正方形ABCD左上角的n×n个小正方形格,第二张纸片盖住第一张纸片的部分恰好为(n-1)×(n-1)的正方形.如此摆放下去,最后直到纸片盖住正方形ABCD的右下角为止.
请你认真观察思考后回答下列问题:
(1)由于正方形纸片边长n的取值不同,完成摆放时所使用正方形纸片的张数也不同,请填写下表:
纸片的边长n23456
使用的纸片张数
(2)设正方形ABCD被纸片盖住的面积(重合部分只计一次)为S1,未被盖住的面积为S2
①当n=2时,求S1:S2的值;
②是否存在使得S1=S2的n值,若存在,请求出这样的n值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案