精英家教网 > 初中数学 > 题目详情
在△ABC外接圆的弧BC上取一点D,作DEBC,交AB的延长线于E,连接BD、CD,求证:AC•BE=BD•CD.
证明:∵DEBC,
∴∠EDB=∠DBA,而∠DBC=∠DAC.
∴∠DAC=∠EDB.
又∠EBD=∠DCA,
∴△DEB△ADC.
∴AC•BE=BD•CD.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

29、在△ABC外接圆的弧BC上取一点D,作DE∥BC,交AB的延长线于E,连接BD、CD,求证:AC•BE=BD•CD.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

在△ABC外接圆的弧BC上取一点D,作DE∥BC,交AB的延长线于E,连接BD、CD,求证:AC•BE=BD•CD.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2000•甘肃)在△ABC外接圆的弧BC上取一点D,作DE∥BC,交AB的延长线于E,连接BD、CD,求证:AC•BE=BD•CD.

查看答案和解析>>

科目:初中数学 来源:2000年甘肃省中考数学试卷(解析版) 题型:解答题

(2000•甘肃)在△ABC外接圆的弧BC上取一点D,作DE∥BC,交AB的延长线于E,连接BD、CD,求证:AC•BE=BD•CD.

查看答案和解析>>

同步练习册答案