精英家教网 > 初中数学 > 题目详情

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2k,1-k,-1-k],对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值是________.

0
分析:先根据特征数为[2k,1-k,-1-k]求出函数的解析式,再由对于任意负实数k,当x<m时,y随x的增大而增大可知-≥m,故可得出m的取值范围,进而得出m的最大整数值.
解答:∵函数y=ax2+bx+c的特征数为[2k,1-k,-1-k],
∴二次函数的解析式为:y=2kx2+(1-k)x-1-k,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∵k为负数,即k<0,
∴2k<0,即函数y=2kx2+(1-k)x-1-k表示的是开口向下的二次函数,
∴在对称轴的左侧,y随x的增大而增大,
∵对于任意负实数k,当x<m时,y随x的增大而增大,
∴x=-=->0,
∴m≤-=-
∵k<0,
∴->0,
-
∵m≤-对一切k<0均成立,
∴m≤-的最小值,
∴m的最大整数值是m=0.
故答案为:0.
点评:本题考查的是二次函数的性质,根据题意得出二次函数的解析式是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

6、定义(p,q)为一次函数y=px+q的特征数.若特征数是(2,k-2)的一次函数为正比例函数,则k的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-4m,2m-1]的函数的一些结论:①当m=
1
2
时,函数图象的顶点坐标是(
1
2
,-
1
4
)
;②当m=-1时,函数在x>1时,y随x的增大而减小;③无论m取何值,函数图象都经过同一个点.其中所有的正确结论有
 
.(填写正确结论的序号)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•江干区一模)定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2k,1-k,-1-k],对于任意负实数k,当x<m时,y随x的增大而增大,则m的最大整数值是
0
0

查看答案和解析>>

科目:初中数学 来源: 题型:

定义{a,b,c}为函数y=ax2+bx+c的“特征数”.如:函数y=x2-2x+3的“特征数”是{1,-2,3},函数y=2x+3的“特征数”是{0,2,3},函数y=-x的“特征数”是{0,-1,0}
(1)将“特征数”是{1,-4,1}的函数的图象向下平移2个单位,得到一个新函数图象,求这个新函数图象的解析式;
(2)“特征数”是{0,-
3
3
3
}
的函数图象与x、y轴分别交点C、D,“特征数”是{0,-
3
3
}
的函数图象与x轴交于点E,点O是原点,判断△ODC与△OED是否相似,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

定义[a,b,c]为函数y=ax2+bx+c的特征数,下面给出特征数为[2m,1-m,-1-m]的函数的一些结论:
①当m=-1时,函数图象的顶点坐标是(
1
2
,4); 
②当m>0时,函数图象截x轴所得的线段长度大于
3
2

③当m<0时,函数在x<
1
4
时,y随x的增大而增大;
④当m≠0时,函数图象经过x轴上一个定点.  
其中正确的结论有
②③④
②③④
.(只需填写序号)

查看答案和解析>>

同步练习册答案