200
分析:根据三角形的面积公式,得OA:OC=S
△AOB:S
△COB=2:3;根据AB∥CD,得△AOB∽△COD,则相似三角形的面积比是相似比的平方,即4:9,进而求得△COD的面积,根据三角形的面积公式,知△AOD的面积和△COB的面积相等.
解答:∵AB∥CD,
∴S
△ABD=S
△ABC,△AOB∽△COD.
∴S
△AOD=S
△BOC=48,

=

=

.
∴S
△COD=72.
则梯形ABCD的面积=32+48×2+72=200.
故答案为:200.
点评:此题考查了三角形面积比的两种计算方法:等高的两个三角形的面积比等于它们的底的比;相似三角形的面积比是相似比的平方.