4£®´º½ÚÆÚ¼ä£¬Ð¡¸ÕËæ°Ö°Ö´Ó¤ÄÏÀ´À¼ÖÝÓÎÍæ£¬ÓÉÓÚ½öÓÐÒ»ÌìµÄʱ¼ä£¬Ð¡¸Õ²»ÄÜÓÎÍæËùÓÐ·ç¾°Çø£¬ÓÚÊǰְÖÈÃС¸ÕÉÏÎç´ÓA£ºÀ¼Öݼ«µØº£ÑóÊÀ½ç£¨ÊÕ·Ñ£©£¬B£º°×Ëþɽ¹«Ô°£¨Ãâ·Ñ£©£¬C£ºË®³µ²©ÀÀÔ°£¨Ãâ·Ñ£©ÖÐÈÎÒâÑ¡ÔñÒ»´¦ÓÎÍæ£»ÏÂÎç´ÓD£ºÎåȪɽ¹«Ô°£¨Ãâ·Ñ£©£¬E£º°²Äþ»¬Ñ©³¡£¨ÊÕ·Ñ£©£¬F£º¸ÊËàÊ¡²©Îï¹Ý£¨Ãâ·Ñ£©£¬G£ºÎ÷²¿»¶ÀÖÔ°£¨ÊÕ·Ñ£©ÖÐÈÎÒâѡһ´¦ÓÎÍæ£®
£¨1£©ÇëÓÃÊ÷״ͼ»òÁÐ±í·¨ËµÃ÷С¸ÕËùÓпÉÄÜÑ¡ÔñµÄ·½Ê½£¨ÓÃ×Öĸ±íʾ£©£»
£¨2£©ÇóС¸ÕÕâÒ»ÌìÓÎÍæµÄ¾°µãÇ¡ºÃÊÇÃâ·ÑµÄ¸ÅÂÊ£®

·ÖÎö £¨1£©Ê×Ïȸù¾ÝÌâÒâ»­³öÊ÷״ͼ£¬ÓÉÊ÷״ͼÇóµÃС¸ÕËùÓпÉÄÜÑ¡ÔñµÄ·½Ê½£»
£¨2£©Ê×ÏÈÓÉ£¨1£©ÖеÄÊ÷״ͼ£¬¼´¿ÉÇóµÃС¸ÕÕâÒ»ÌìÓÎÍæµÄ¾°µãÇ¡ºÃÊÇÃâ·ÑµÄÇé¿ö£¬È»ºóÀûÓøÅÂʹ«Ê½Çó½â¼´¿ÉÇóµÃ´ð°¸£®

½â´ð ½â£º£¨1£©Áбí¸ñÈçÏ£º


ÏÂÎç
ÉÏÎç
DEFG
A£¨A£¬D£©£¨A£¬E£©£¨A£¬F£©£¨A£¬G£©
B£¨B£¬D£©£¨B£¬E£©£¨B£¬F£©£¨B£¬G£©
C£¨C£¬D£©£¨C£¬E£©£¨C£¬F£©£¨C£¬G£©
£¨2£©¡ßÒ»¹²ÓÐ12ÖֵȿÉÄܵĽá¹û£¬¶øÇ¡ºÃС¸ÕÕâÒ»ÌìµÄÓÎÍæµÄ¾°µãÇ¡ºÃÊÇÃâ·ÑµÄÓУ¨B£¬D£©£¬£¨C£¬D£©£¬£¨B£¬F£©£¬£¨C£¬F£©4ÖÖ£®
¡àP£¨Ð¡¸ÕÕâÒ»ÌìÓÎÍæµÄ¾°µãÇ¡ºÃÊÇÃâ·Ñ£©=$\frac{4}{12}$=$\frac{1}{3}$£®

µãÆÀ ´ËÌ⿼²éµÄÊÇÓÃÁÐ±í·¨»òÊ÷״ͼ·¨Çó¸ÅÂÊ£®×¢ÒâÊ÷״ͼ·¨ÓëÁÐ±í·¨¿ÉÒÔ²»Öظ´²»ÒÅ©µÄÁгöËùÓпÉÄܵĽá¹û£¬ÁÐ±í·¨ÊʺÏÓÚÁ½²½Íê³ÉµÄʼþ£»Ê÷״ͼ·¨ÊʺÏÁ½²½»òÁ½²½ÒÔÉÏÍê³ÉµÄʼþ£»×¢Òâ¸ÅÂÊ=ËùÇóÇé¿öÊýÓë×ÜÇé¿öÊýÖ®±È£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªABÊÇ¡ÑOµÄÖ±¾¶£¬PÊÇABÑÓ³¤ÏßÉÏÒ»µã£¬PCÇСÑOÓÚC£¬CD¡ÍAB½»¡ÑOÓÚÁíÒ»µãD£¬Á¬½ÓPD£®
£¨1£©ÇóÖ¤£ºPDÊÇ¡ÑOµÄÇÐÏß
£¨2£©ÈôPD=3£¬PB=1£¬Çó¡ÑOµÄ°ë¾¶£»
£¨3£©ÈôPD=4£¬sin¡ÏCDB=$\frac{\sqrt{5}}{5}$£¬Çó¡ÑOµÄ°ë¾¶£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÈçͼÊÇСÀîÏúÊÛijÖÖʳƷµÄ×ÜÀûÈóyÔªÓëÏúÊÛÁ¿xǧ¿ËµÄº¯ÊýͼÏó£¨×ÜÀûÈó=×ÜÏúÊÛ¶î-×ܳɱ¾£©£®ÓÉÓÚĿǰÏúÊÛ²»¼Ñ£¬Ð¡ÀîÏëÁËÁ½¸ö½â¾ö·½°¸£º
·½°¸£¨1£©ÊDz»¸Ä±äʳƷÊÛ¼Û£¬¼õÉÙ×ܳɱ¾£»
·½°¸£¨2£©ÊDz»¸Ä±ä×ܳɱ¾£¬Ìá¸ßʳƷÊÛ¼Û£®
ÏÂÃæ¸ø³öµÄËĸöͼÏóÖÐÐéÏß±íʾеÄÏúÊÛ·½Ê½ÖÐÀûÈóÓëÏúÊÛÁ¿µÄº¯ÊýͼÏó£¬Ôò·Ö±ð·´Ó³ÁË·½°¸£¨1£©£¨2£©µÄͼÏóÊÇ£¨¡¡¡¡£©
A£®¢Ú£¬¢ÛB£®¢Ù£¬¢ÛC£®¢Ù£¬¢ÜD£®¢Ü£¬¢Ú

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®Èçͼ£¬ÔÚRt¡÷ABCÖУ¬¡ÏC=90¡ã£¬¡ÏA¡¢¡ÏB¡¢¡ÏCµÄ¶Ô±ß·Ö±ðÊÇa¡¢b¡¢c£¬ÎÒÃǰѡÏAµÄÁÚ±ßÓëб±ßµÄ±È½Ð×ö¡ÏAµÄÓàÏÒ£¬¼Ç×÷cosA£¬¼´cosA=$\frac{b}{c}$£®µ±c=2£¬a=1ʱ£¬ÇócosA£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

19£®ÔĶÁ²ÄÁÏ£º¶ÔÓÚÈκÎʵÊý£¬ÎÒÃǹ涨·ûºÅ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$µÄÒâÒåÊÇ$|\begin{array}{l}{a}&{b}\\{c}&{d}\end{array}|$=ad-bc£®ÀýÈ磺$|\begin{array}{l}{1}&{2}\\{3}&{4}\end{array}|$=1¡Á4-2¡Á3=-2£¬
£¨1£©°´ÕÕÕâ¸ö¹æ¶¨£¬ÇëÄã¼ÆËã$|\begin{array}{l}{5}&{6}\\{7}&{8}\end{array}|$µÄÖµ£»
£¨2£©°´ÕÕÕâ¸ö¹æ¶¨£¬ÇëÄã¼ÆË㣺µ±x2-4x+4=0ʱ£¬$|\begin{array}{l}{x+1}&{2x}\\{x-1}&{2x-3}\end{array}|$µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®¼ÆË㣺$\sqrt{24}$-$\sqrt{6}$=$\sqrt{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®ÔÚ¾ØÐÎABCDÖУ¬AD=5£¬AB=3£¬AEƽ·Ö¡ÏBAD½»BC±ßÓÚµãE£¬ÔòÏß¶ÎBE£¬ECµÄ³¤¶È·Ö±ðΪ£¨¡¡¡¡£©
A£®2ºÍ3B£®3ºÍ2C£®4ºÍ1D£®1ºÍ4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®¼ÆË㣺
£¨1£©${£¨{\frac{1}{2}}£©^3}¡Á{£¨{\frac{1}{2}}£©^2}¡Á{£¨{-\frac{1}{2}}£©^4}¡Á£¨{\frac{1}{2}}£©$
£¨2£©${[{{{£¨{-\frac{1}{2}}£©}^n}}]^2}+{£¨{-\frac{1}{2}}£©^{2n-1}}¡Á\frac{1}{2}$£¨nÊÇÕýÕûÊý£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®¼ÆË㣺
£¨1£©2-2+|-$\sqrt{12}$|-2cos30¡ã-£¨¦Ð+$\sqrt{3}$£©0
£¨2£©£¨$\frac{a+2}{{a}^{2}-2a}$-$\frac{a-1}{{a}^{2}-4a+4}$£©$¡Â\frac{a-4}{a}$£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸