精英家教网 > 初中数学 > 题目详情
如图,在梯形ABCD中,AD∥BC,∠B=90°,AB=10cm,AD=18cm,BC=21cm,点P从点A出发,沿边AD向点D以1cm/s的速度移动,点Q从点C出发沿边CB向点B以2cm/s的速度移动,若点P与点Q同时出发,当这两点有一点运动到端点时,另一点也停止运动,没运动时间为t(秒).
(1)求四边形APQB的面积;(用含t的代数式表示)
(2)当t为何值时,四边形PQCD为等腰梯形?
(3)连接PC,是否存在t的值,使得△PQC的面积、△PCD的面积与四边形APQB的面积同时相等?若存在,求出t的值;若不存在,说明理由.
解:(1)根据题意可知AP=t,BQ=21﹣2t,故S四边形APQB=×10=105﹣5t,
(2)过P作PN⊥BC于N,过D作DM⊥BC于M,∵AD∥BC,∠B=90°,DM⊥BC,
∴四边形ABMD是矩形,AD=BM.∴MC=BC﹣BM=BC﹣AD=3.
又∵QN=BN﹣BQ=AP﹣BQ=t﹣(21﹣2t)=3t﹣21.若梯形PQCD为等腰梯形,则QN=MC.得3t﹣21=3,t=8,即t=8秒时,梯形PQCD是等腰梯形.
(3)若△PQC的面积与△PCD的面积相等,则CQ×10=PD×10,
∴CQ=PD,即2t=18﹣t,解得t=6,此时S△PQC=S△PCD=×12×10=60,
∴SAPQB=×10=75,所以不存在t的值,使得△PQC的面积、△PCD的面积与四边形APQB的面积同时相等.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

11、如图,在梯形ABCD中,AB∥CD,对角线AC、BD交于点O,则S△AOD
=
S△BOC.(填“>”、“=”或“<”)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,在梯形ABCD中,AD∥BC,AB⊥BC,AD=2,BC=CD=10.
求:梯形ABCD的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,AB⊥AD,对角线BD⊥DC.
(1)求证:△ABD∽△DCB;
(2)若BD=7,AD=5,求BC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

20、如图,在梯形ABCD中,AD∥BC,并且AB=8,AD=3,CD=6,并且∠B+∠C=90°,则梯形面积S梯形ABCD=
38.4

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在梯形ABCD中,AD∥BC,∠BCD=90°,以CD为直径的半圆O切AB于点E,这个梯形的面积为21cm2,周长为20cm,那么半圆O的半径为(  )
A、3cmB、7cmC、3cm或7cmD、2cm

查看答案和解析>>

同步练习册答案