精英家教网 > 初中数学 > 题目详情

如图,⊙O的直径AB垂直于弦CD,垂足为H,点P是上一动点(点P不与A,C两点重合),连结PC,PD,AD,PA,点E在AP的延长线上,PD与AB交于点F,给出下列四个结论:(1)CH2=AH·BH,(2),(3)AD2=DF·DP,(4)∠EPC=∠APD,其中正确的个数是

[  ]

A.1
B.2
C.3
D.4
答案:C
解析:

根据垂径定理,CH=DH,(结论(2)正确),∴ADC=∠APD,∵∠EPC和∠ADC都和∠APC互补,∴∠EPC=∠ADC,∴∠EPC=∠APD(结论(4)正确).

在△ADH和△BCH中,∵∠DAH=∠BCH,∠ADH=∠CBH,∴△ADH∽△BCH,∴AH:CH=DH:BH,又∵CH=DH,∴=AH·BH(结论(1)正确).

=DF·DP,则必有△DAF∽△DPA,此时∠DAF=∠DPA,显然不成立,∴结论(3)错误。


练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知:如图,⊙O的直径AB与弦CD相交于E,
BC
=
BD
,⊙O的切线BF与弦AD的延长线相交于点F.
(1)求证:CD∥BF.
(2)连接BC,若⊙O的半径为4,cos∠BCD=
3
4
,求线段AD、CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径AB与弦CD(不是直径)相交于E,E是CD的中点,过点B作BF∥CD交AD的延长线于
点F.
(1)求证:BF是⊙O的切线;
(2)连接BC,若⊙O的半径为5,∠BCD=38°,求线段BF、BC的长.(精确到0.1)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB,CD互相垂直,P为  上任意一点,连PC,PA,PD,PB,下列结论:
①∠APC=∠DPE;
 ②∠AED=∠DFA;
CP+DP
BP+AP
=
AP
DP
.其中正确的个数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•柳州)如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
92

(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径AB垂直弦CD于P,且P是半径OB的中点,CD=6cm,则直径AB的长是
4
3
cm
4
3
cm

查看答案和解析>>

同步练习册答案