精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD为等腰梯形,AD∥BC,AB=CD,对角线AC、BD交于点O,且AC⊥BD,DH⊥BC.
(1)求证:DH=数学公式(AD+BC);
(2)若AC=6,求梯形ABCD的面积.

(1)证明:过D作DE∥AC交BC延长线于E,
∵AD∥BC,
∴四边形ACED为平行四边形.
∴CE=AD,DE=AC.
∵四边形ABCD为等腰梯形,
∴BD=AC=DE.
∵AC⊥BD,
∴DE⊥BD.
∴△DBE为等腰直角三角形.
∵DH⊥BC,
∴DH=BE=(CE+BC)=(AD+BC).

(2)解:∵AD=CE,

∵△DBE为等腰直角三角形,BD=DE=6,

∴梯形ABCD的面积为18.
注:此题解题方法并不唯一.
分析:(1)本题要靠辅助线的帮助.过D作DE∥AC交BC延长线于E.由四边形ABCD为等腰梯形推出DE⊥BD,然后证明DH⊥BC即可求解.
(2)此题的重点是求得S?ABCD与△DBE面积相等.即求出△DBE的面积即可.
点评:本题考查的是等腰梯形,等边三角形的性质以及等腰直角三角形的有关知识点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案