精英家教网 > 初中数学 > 题目详情

作业宝已知:如图,AB是⊙O的直径,PB切⊙O于点B,PA交⊙O于点C,∠APB是平分线分别交BC,AB于点D、E,交⊙O于点F,∠A=60°,并且线段AE、BD的长是一元二次方程 x2-kx+2数学公式=0的两根(k为常数).
(1)求证:PA•BD=PB•AE;
(2)求证:⊙O的直径长为常数k;
(3)求tan∠FPA的值.

(1)证明:如图,
∵PB切⊙O于点B,
∴∠PBD=∠A,
∵PF平分∠APB,
∴∠APE=∠BPD,
∴△PBD∽△PAE,
∴PB:PA=BD:AE,
∴PA•BD=PB•AE;

(2)证明:如图,
∵∠BED=∠A+∠EPA,∠BDE=∠PBD+∠BPD.
又∵∠PBD=∠A,∠EPA=∠BPD,
∴∠BED=∠BDE.
∴BE=BD.
∵线段AE、BD的长是一元二次方程 x2-kx+2=0的两根(k为常数),
∴AE+BD=k,
∴AE+BD=AE+BE=AB=k,
即⊙O直径为常数k.

(3)∵PB切⊙O于B点,AB为直径.
∴∠PBA=90°.
∵∠A=60°.
∴PB=PA•sin60°=PA,
又∵PA•BD=PB•AE,
∴BD=AE,
∵线段AE、BD的长是一元二次方程 x2-kx+2=0的两根(k为常数).
∴AE•BD=2
AE2=2
解得:AE=2,BD=
∴AB=k=AE+BD=2+,BE=BD=
在Rt△PBA中,PB=AB•tan60°=(2+)×=3+2
在Rt△PBE中,tan∠BPF===2-
∵∠FPA=∠BPF,
∴tan∠FPA=2-
分析:(1)由PB切⊙O于点B,根据弦切角定理,可得∠PBD=∠A,又由PF平分∠APB,可证得△PBD∽△PAE,然后由相似三角形的对应边成比例,证得PA•BD=PB•AE;
(2)易证得BE=BD,又由线段AE、BD的长是一元二次方程 x2-kx+2=0的两根(k为常数),即可得AE+BD=k,继而求得AB=k,即:⊙O的直径长为常数k;
(3)由∠A=60°,并且线段AE、BC的长是一元二次方程 x2-kx+2=0的两根(k为常数),可求得AE与BD的长,继而求得tan∠FPB的值,则可得tan∠FPA的值.
点评:此题考查了切线的性质、等腰三角形的判定与性质、相似三角形的判定与性质以及根与系数的关系等知识.此题难度较大,注意掌握数形结合思想与方程思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图,AB是⊙O的直径,BC是和⊙O相切于点B的切线,⊙O的弦AD平行于OC.
求证:DC是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•门头沟区一模)已知:如图,AB是⊙O的直径,AC是⊙O的弦,M为AB上一点,过点M作DM⊥AB,交弦AC于点E,交⊙O于点F,且DC=DE.
(1)求证:DC是⊙O的切线;
(2)如果DM=15,CE=10,cos∠AEM=
513
,求⊙O半径的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•昆明)已知:如图,AB是⊙O的直径,直线MN切⊙O于点C,AD⊥MN于D,AD交⊙O于E,AB的延长线交MN于点P.求证:AC2=AE•AP.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•平谷区二模)已知,如图,AB是⊙O的直径,点E是
AD
的中点,连接BE交AC于点G,BG的垂直平分线CF交BG于H交AB于F点.
(1)求证:BC是⊙O的切线;
(2)若AB=8,BC=6,求BE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:如图,AB是⊙O的直径,BC为⊙O的切线,过点B的弦BD⊥OC交⊙O于点D,垂足为E.
(1)求证:CD是⊙O的切线;
(2)当BC=BD,且BD=12cm时,求图中阴影部分的面积(结果不取近似值).

查看答案和解析>>

同步练习册答案