精英家教网 > 初中数学 > 题目详情

作业宝如图,ABCD为正方形,E为BC上一点,将正方形折叠,使A点与E点重合,折痕为MN,若tan∠AEN=数学公式,DC+CE=10.
(1)求△ANE的面积;
(2)求sin∠ENB的值.

解:由折叠可知:MN为AE的垂直平分线,
∴AN=EN,
∴∠EAN=∠AEN(等边对等角),
∴tan∠AEN=tan∠EAN=
∴设BE=a,AB=3a,则CE=2a,
∵DC+CE=10,
∴3a+2a=10,
∴a=2,
∴BE=2,AB=6,CE=4,
∵AE==2
∴EG=AE=×2=
又∵
∴NG=
∴AN=
∴AN=NE=
∴S△ANE=

sin∠ENB==
分析:要求△ANE的面积,就要求出这个三角形的底和高,由已知条件tan∠AEN的值,DC+CE=10,又因为∠AEN=∠EAN,所以可以先设BE=a,从而求出AB=3a,CE=2a进而求出a的值,求出BE=2,AB=6,CE=4.求出底AD的长,然后再由tan∠AEN与边的关系,求出高,最后利用面积公式求面积;sin∠ENB的值用正弦定义求即可.
点评:此图形较为复杂,要做好此题,首先要理清图中边角的关系,另外此题假设BE=a也是一个关键,考查解直角三角形的定义,由直角三角形已知元素求未知元素的过程,只要理解直角三角形中边角之间的关系即可求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

24、如图,在正方ABCD中,E是AB边上任一点,BG⊥CE,垂足为O,交AC于点F,交AD于点G.
(1)证明BE=AG;
(2)E位于什么位置时,∠AEF=∠CEB?说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

课题学习:
(1)如图1,E、F、G、H分别是正方形ABCD各边的中点,则四边形EFGH是
正方
正方
形,正方形ABCD的面积记为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(2)如图2,E、F、G、H分别是菱形ABCD各边的中点,则四边形EFGH是
形,菱形ABCD的面积为S1,EFGH的面积为S2,则S1和S2间的数量关系:
S1=2S2
S1=2S2

(3)如图3,梯形ABCD中,AD∥BC,对角线AC⊥BD,垂足为O,E、F、G、H分别为各边的中点.四边形EFGH是
形;若梯形ABCD的面积记为S1,四边形EFGH的面积记为S2,由图可猜想S1和S2间的数量关系为:
S1=2S2
S1=2S2

(4)如图4,E、G分别是平行四边形ABCD的边AB、DC的中点,H、F分别是边形AD、BC上的点,且四边形EFGH为平行四边形,若把平行四边形ABCD的面积记为S1,把平行四边形形EFGH的面积记为S2,试猜想S1和S2间的数量关系,并加以证明.

查看答案和解析>>

科目:初中数学 来源:2013届江苏省无锡市前洲中学九年级下学期期中考试数学试卷(带解析) 题型:解答题

如图,四边形ABCD的边AB在X轴上,A与O重合,CD∥AB,D(0,),直线AE与CD交于E,DE=6。以BE为折痕,把点A翻恰好与点C重合;动点P从点D出发沿着D→C→B→O路径匀速运动,速度为每秒4个单位;以P为圆心的⊙P半径每秒增加个单位,当点P在点D处时,⊙P半径为;直线AE沿y轴正方向向上平移,速度为每秒个单位;直线AE、⊙P同时出发,当点P到终点O时两者都停止,运动时间为t;

(1) 求点B的坐标;
(2)求当直线AE与⊙P相切时t的值;
(3) 在整个运动过程中直线AE与⊙P相交的时间共有几秒?(直接写出答案)

查看答案和解析>>

科目:初中数学 来源:2012-2013学年江苏省无锡市九年级下学期期中考试数学试卷(解析版) 题型:解答题

如图,四边形ABCD的边AB在X轴上,A与O重合,CD∥AB,D(0,),直线AE与CD交于E,DE=6。以BE为折痕,把点A翻恰好与点C重合;动点P从点D出发沿着D→C→B→O路径匀速运动,速度为每秒4个单位;以P为圆心的⊙P半径每秒增加个单位,当点P在点D处时,⊙P半径为;直线AE沿y轴正方向向上平移,速度为每秒个单位;直线AE、⊙P同时出发,当点P到终点O时两者都停止,运动时间为t;

(1) 求点B的坐标;

(2)求当直线AE与⊙P相切时t的值;

(3) 在整个运动过程中直线AE与⊙P相交的时间共有几秒?(直接写出答案)

 

查看答案和解析>>

科目:初中数学 来源:重庆市期末题 题型:证明题

如图,AC为正方ABCD形的一条对角线,点E为DA边延长线上的一点,连接BE,在BE上取一点F,使BF=BC,过点B作BK⊥BE于B,交AC于点K,连接CF,交AB于点H,交BK于点G。
(1)求证:BH=BG;
(2)求证:BE=BG+AE。

查看答案和解析>>

同步练习册答案