精英家教网 > 初中数学 > 题目详情
5、Rt△ABC中,∠C=90°,它的内切圆O分别与AB、BC、CA相切于D、E、F,且BD=6,AD=4,则是⊙O的半径是(  )
分析:利用切线长定理可得AF,BE的长.CE,CF等于半径,再用勾股定理得到关于r的方程,解方程即可.
解答:解:如图,
∵⊙O是直角三角形ABC的内切圆
∴AF=AD=4;BE=BD=6
设⊙O的半径为r,则CE=CF=r
∴(4+r)2+(6+r)2=(4+6)2
∴r=2.
故选D.
点评:熟悉三角形的内切圆的性质和切线长定理.学会利用方程的思想解几何问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,∠BAC=60°,DE垂直平分BC,垂足为D,交AB于点E.又点F在DE的精英家教网延长线上,且AF=CE.求证:四边形ACEF是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在Rt△ABC中,∠BAC=90°,点D、E、F分别是三边的中点,且CF=3cm,则DE=
 
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,AC⊥BC,CD⊥AB于D,AC=8,BC=6,则AD=
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在等腰Rt△ABC中,∠C=90°,正方形DEFG的顶点D在边AC上,点E、F在边AB上,精英家教网点G在边BC上.
(1)求证:AE=BF;
(2)若BC=
2
cm,求正方形DEFG的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,Rt△ABC中,∠C=90°,D为AB的中点,DE⊥AB,AB=20,AC=12,则四边形ADEC的面积为
 

查看答案和解析>>

同步练习册答案