科目:初中数学 来源:初中数学 三点一测丛书 八年级数学 下 (江苏版课标本) 江苏版 题型:044
一般地,如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=-f(x)f那么y=f(x)就叫做奇函数;如果函数y=f(x)对于自变量取值范围内的任意x,都有f(-x)=f(x),那么y=f(x)就叫做偶函数.
例如:f(x)=x3+x.
当x取任意实数,
f(-x)=(-x)3+(-x)=-x3-x=-(x3+x)
即f(-x)=-f(x)
所以f(x)=x3+x为奇函数.
又如:f(x)=|x|,
当x取任意实数时,f(-x)=|-x|=|x|=f(x),
即f(-x)=f(x)
所以f(x)为偶函数.
问题:(1)下列函数:
①y=x4;②y=x2+1;③y=
;④y=
;⑤y=x+
.
所有奇函数是________,所有偶函数是________(只填序号);
(2)请你再分别写出一个奇函数,一个偶函数.
查看答案和解析>>
科目:初中数学 来源: 题型:
(10分)如图,抛物线F:y=ax 2+bx+c的顶点为P,抛物线F与
轴交于点A,
过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F ′:
y=a′x 2+b′x+c′,抛物线F ′ 与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,
①写出点D的坐标 ▲ ; ②求b:
的值;
(2)若a、b、c满足b 2=ac,探究b:
的值是否为定值?若是定值请求出这个定值;若不是请说明理由.
![]()
查看答案和解析>>
科目:初中数学 来源: 题型:
数学课堂上,徐老师出示一道试题:如图(十)所示,在正三角形ABC中,M是BC边(不含端点B、C)上任意一点,P是BC延长线上一点,N是∠ACP的平分线上一点.若∠AMN=60°,求证:AM=MN.
(1)经过思考,小明展示了一种正确的证明过程.请你将证明过程补充完整.
证明:在AB上截取EA=MC,连结EM,得△AEM.
∵∠1=180°-∠AMB-∠AMN,∠2=180°-∠AMB-∠B,∠AMN=∠B=60°,∴∠1=∠2.
又CN平分∠ACP,∠4=∠ACP=60°.∴∠MCN=∠3+∠4=120°…………①
又∵BA=BC,EA=MC,∴BA-EA=BC-MC,即BE=BM.
∴△BEM为等边三角形.∴∠6=60°.
∴∠5=180°-∠6=120°.………②
∴由①②得∠MCN=∠5.
在△AEM和△MCN中,
∵________________________________
∴△AEM≌△MCN (ASA).∴AM=MN.
(2)若将试题中的“正三角形ABC”改为“正方形A1B1C1D1”(如图),N1是∠D1C1P1的平分线上一点,则当∠A1M1N1=90°时,结论A1M1=M1N1.是否还成立?(直接写出答案,不需要证明)
(3) 若将题中的“正三角形ABC”改为“正多边形AnBnCnDn…Xn”,请你猜想:当∠AnMnNn= °时,结论AnMn=MnNn仍然成立?(直接写出答案,不需要证明)
查看答案和解析>>
科目:初中数学 来源:2011年广东省深圳市宝安区中考模拟数学卷 题型:选择题
对于数对(a,b)、(c,d),定义:当且仅当a=c且b=d时,(a,b)=(c,d);并定义其运算如下:(a,b)※(c,d)=(ac-bd,ad+bc),如(1,2)※(3,4)=(1×3-2×4,1×4+2×3)=(-3,10)。若(x,y)※(1,-1)=(1,3),则xy的值是( )
A.-1 B.0 C.1 D.2
查看答案和解析>>
科目:初中数学 来源:2011年南京市浦口区中考数学一模试卷 题型:解答题
(10分)如图,抛物线F:y=ax 2+bx+c的顶点为P,抛物线F与
轴交于点A,
过点P作PD⊥x轴于点D,平移抛物线F使其经过点A、D得到抛物线F ′:
y=a′x 2+b′x+c′,抛物线F ′ 与x轴的另一个交点为C.
(1)当a=1,b=-2,c=3时,
①写出点D的坐标 ▲ ; ②求b
:
的值;
(2)若a、b、c满足b 2=ac,探究b
:
的值是否为定值?若是定值请求出这个定值;若不是请说明理由.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com