精英家教网 > 初中数学 > 题目详情
已知:如图,△EFC中,A是EF边上一点,AB∥EC,AD∥FC,若∠EAD=∠FAB.AB=a,AD=b.
(1)求证:△EFC是等腰三角形;
(2)求EC+FC.
解:(1)略.  
(2)EC+FC=2a+2b.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知,如图:直线AB:y=-x+8与x轴、y轴分别相交于点B、A,过点B作直线AB的垂线交y轴于点D.
(1)求BD两点确定的直线解析式;
(2)若点C是x轴负半轴上的任意一点,过点C作AC的垂线与BD相交于点E,请你判断:线段AC与CE的大小关系并证明你的判断;
(3)若点G为第二象限内任一点,连接EG,过点A作AF⊥FG于F,连接CF,当点C在x轴的负半轴上运动时,∠EFC的度数是否发生变化?若不变,请求出∠EFC的度数;若变化,请求出其变化范围.
精英家教网精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

32、已知,如图,D是AB上一点,E是AC上的一点,BE,CD相交于点F,∠A=62°,∠ACD=35°,∠ABE=20°,求:
(1)∠BDC的度数;
(2)∠EFC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•龙川县二模)已知:如图,在平面直角坐标系xOy中,直线y=kx+b(k>0,b>0)与x轴、y轴分别交于点A、B,与双曲线y=
m
x
相交于C、D两点,且点D的坐标为(1,5),C点的坐标为(p,q),作CE⊥x轴于E,作DF⊥y轴于F,连接EF.
(1)请直接写出m的值:
5
5

(2)判断△EFC的面积和△EFD的面积是否相等,并说明理由;
(3)若AB=
2
3
CD时,则AB与OA有何数量关系?并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•锡山区一模)已知:如图1,在平面直角坐标系中,O为坐标原点,直线y=kx+b与x轴、y轴分别交于点A、B,与双曲线y=
m
x
相交于C、D两点,且点D的坐标为(1,6).
(1)当点C的横坐标为2时,试求直线AB的解析式,并直接写出
CD
AB
的值为
1
3
1
3

(2)如图2,当点A落在x 轴的负半轴时,过点C作x轴的垂线,垂足为E,过点D作y轴的垂线,垂足为F,连接EF.
①判断△EFC的面积和△EFD的面积是否相等,并说明理由;
②当
CD
AB
=2时,求tan∠OAB的值.

查看答案和解析>>

同步练习册答案