精英家教网 > 初中数学 > 题目详情
(2001•乌鲁木齐)已知:如图,在平行四边形ABCD中,AC、BD交于点O,AE⊥BD,CF⊥BD,E、F为垂足.求证:AC与EF互相平分.(请用两种方法证明)

【答案】分析:方法一:根据平行四边形的对角线互相平分,得到OA=OC,只需证明OE=OF.根据AAS证明△AOE≌△COF即可得到;
方法二:要证明AC与EF互相平分,连接AF,CE.只需证明四边形AECF是平行四边形即可.根据AE⊥BD,CF⊥BD,得到AE∥CF.根据△ABE≌△CDF,得到AE=CF.再根据一组对边平行且相等的四边形是平行四边形进行证明.
解答:证明:方法一:∵四边形ABCD是平行四边形,
∴OA=OC.
∵∠AOE=∠COF,∠AEO=∠CFO=90°
∴△AEO≌△CFO
∴OE=OF,即AC与EF互相平分.

方法二:连接AF,CE.
∵AB∥CD,AB=CD,
∴∠ABE=∠CDF.
又∠AEB=∠CFD=90°,
∴△ABE≌△CDF.
∴AE=CF.
又AE∥CF,
∴四边形AECF是平行四边形.
∴AC与EF互相平分.
点评:本题综合运用平行四边形的性质和全等三角形的性质和判定,运用平行四边形的性质解决以下问题,如求角的度数、线段的长度,证明角相等或互补,证明线段相等或倍分等.
练习册系列答案
相关习题

科目:初中数学 来源:2001年全国中考数学试题汇编《二次函数》(02)(解析版) 题型:解答题

(2001•乌鲁木齐)如图,直线AB过点A(m,0)、B(0,n)(m>0,n>0),反比例函数的图象与直线AB交于C、D两点,P为双曲线上任意一点,过P点作PQ⊥x轴于Q,PR⊥y轴于R.
(1)用含m、n的代数式表示△AOB的面积S;
(2)若m+n=10,n为何值时S最大并求出这个最大值;
(3)若BD=DC=CA,求出C、D两点的坐标;
(4)在(3)的条件,过O、D、C点作抛物线,当该抛物线的对称轴为x=1时,矩形PROQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源:2001年新疆乌鲁木齐市中考数学试卷(解析版) 题型:解答题

(2001•乌鲁木齐)如图,直线AB过点A(m,0)、B(0,n)(m>0,n>0),反比例函数的图象与直线AB交于C、D两点,P为双曲线上任意一点,过P点作PQ⊥x轴于Q,PR⊥y轴于R.
(1)用含m、n的代数式表示△AOB的面积S;
(2)若m+n=10,n为何值时S最大并求出这个最大值;
(3)若BD=DC=CA,求出C、D两点的坐标;
(4)在(3)的条件,过O、D、C点作抛物线,当该抛物线的对称轴为x=1时,矩形PROQ的面积是多少?

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(06)(解析版) 题型:解答题

(2001•乌鲁木齐)已知:如图△ABC中,∠ACB=90°,以AC为直径的⊙O交AB于D,过D作⊙O的切线交BC于点E,EF⊥AB,垂足为F.
(1)求证:DE=BC;
(2)若AC=6,BC=8,求S△ACD:S△EDF的值.

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(03)(解析版) 题型:填空题

(2001•乌鲁木齐)如图,⊙O的两条弦AB、CD相交于E,如果AE=2,EB=6,CE=3,那么CD=   

查看答案和解析>>

科目:初中数学 来源:2001年全国中考数学试题汇编《圆》(03)(解析版) 题型:填空题

(2001•乌鲁木齐)已知:AB是⊙O的直径,弦CD与AB相交于E,若使弧CB=弧BD,则还需要添加什么条件    .(填出一个即可)

查看答案和解析>>

同步练习册答案