精英家教网 > 初中数学 > 题目详情
阅读:为解方程(x2-1)2-5(x-1)+4 =0。我们可将x2-1视为一个整体,然后设x2-1=y,
则(x2-1)2= y2,原方程化成y2-5y+4=0,
解得y1=1,y2=4。
当y=1时,x2-1=1,∴x2=2,∴x=±
当y=4时,x2-1=4,∴x2=5,∴x=±
所以原方程的解为:x1=,x2=,x3=,x4=
解答问题:
(1)填空,在由原方程得到方程①的过程中,利用______法达到降次的目的,体现了______的数学思想;
(2)解方程x4-x2-6=0。
解:(1)换元,转化;
(2)设x2=y,则y2-y-6= 0
∴yl=3,y2=-2
∵x2>0
∴y2=-2(应该舍去)
∴y=3
∴x2=3
∴x=±
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

阅读材料:为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,然后设x2-1=y…①,
那么原方程可化为y2-5y+4=0,
解得y1=1,y2=4.
当y=1时,x2-1=1,∴x2=2,∴x=±
2

当y=4时,x2-1=4,∴x2=5,∴x=±
5

故原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

解答问题:
(1)上述解题过程,在由原方程得到方程①的过程中,利用
 
法达到了解方程的目的,体现了转化的数学思想;
(2)请利用以上知识解方程x4-x2-6=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

请同学们认真阅读下面的一段文字材料,然后解答题目中提出的有关问题.
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1视为一个整体,然后设x2-1=y,则原方程可化为y2-5y+4=0①
解得y1=1,y2=4
当y=1时,x2-1=1,∴x2=2,x=±
2

当y=4时,x2-1=4,∴x2=5,x=±
5

∴原方程的解为x1=
2
,x2=-
2
,x3=
5
,x4=-
5

解方程:(1)(3x+5)2-4(3x+5)+3=0
(2)x4-10x2+9=0.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下列材料:
为解方程(x2-1)2-5(x2-1)+4=0,我们可以将x2-1看作一个整体,设x2-1=y,则原方程可化为y2-5y+4=0,解得y1=1,y2=4.
当y1=1时,x2-1=1,∴x=±
2
;当y2=4时,x2-1=4,∴x=±
5

因此原方程的解为:x1=
2
x2=-
2
x3=
5
x4=-
5

(1)已知方程
1
x2-2x
=x2-2x-3
,如果设x2-2x=y,那么原方程可化为
 
(写成关于y的一元二次方程的一般形式).
(2)根据阅读材料,解方程:x(x+3)(x2+3x+2)=24.

查看答案和解析>>

科目:初中数学 来源: 题型:

阅读例题:
解方程:x2-|x|-2=0
解:(1)当x≥0时,得x2-x-2=0,(2)当x<0时,得x2+x-2=0,
解得x1=2,x2=-1<0(舍去).            解得x1=1(舍去),x2=-2.
∴原方程的根为解得x1=2,x2=-2.
请参照例题的方法解方程x2-|x-1|-1=0.

查看答案和解析>>

同步练习册答案