精英家教网 > 初中数学 > 题目详情

正方形ABCD与正方形OEFG中,点D和点F的坐标分别为(-3,2)和(1,-1),则这两个正方形的位似中心的坐标为________.

(-1,0)或(5,-2).
分析:由图形可得两个位似图形的位似中心必在x轴上,连接AF、DG,其交点即为位似中心,进而再由位似比即可求解位似中心的坐标.
解答:解:当位似中心在两正方形之间,
连接AF、DG,交于H,如图所示,则点H为其位似中心,且H在x轴上,
∵点D的纵坐标为2,点F的纵坐标为1,
∴其位似比为2:1,
∴CH=2HO,即OH=OC,
又C(-3,0),∴OC=3,
∴OH=1,
所以其位似中心的坐标为(-1,0);
当位似中心在正方形OEFG的右侧时,如图所示,连接DE并延长,连接CF并延长,
两延长线交于M,过M作MN⊥x轴,
∵点D的纵坐标为2,点F的纵坐标为1,
∴其位似比为2:1,
∴EF=DC,即EF为△MDC的中位线,
∴ME=DE,又∠DEC=∠MEN,∠DCE=∠MNE=90°,
∴△DCE≌△MNE,
∴CE=EN=OC+OE=3+1=4,即ON=5,MN=DC=2,
则M坐标为(5,-2),

综上,位似中心为:(-1,0)或(5,-2).
故答案为:(-1,0)或(5,-2)
点评:本题主要考查了位似变换以及坐标与图形结合的问题,能够熟练运用位似的性质求解一些简单的位似计算问题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,直线l1:y=-x+1与两直线l2:y=2x,l3:y=x分别相交于M、N两点.设点P为x轴上的一点,过点P的直线l:y=-x+b与直线l2、l3分别交于A、C两点,以线段AC为对角线作正方形ABCD.
(1)写出正方形ABCD各顶点的坐标(用b表示);
(2)当点P从原点O出发,沿着x轴的正方向运动时,设正方形ABCD和△OMN重叠部分的面积为S,求S与b之间的函数关系式,并写出自变量b的取值范围.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•恩施州)如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A运动的路径线与x轴围成的面积为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知正方形ABCD的边长为4,将正方形置于平面直角坐标系xOy中,使AB在x轴的负半轴上,A点的坐标是(-1,0).
(1)若经过点C的直线y=-
125
x-8
与x轴交于点E,求四边形AECD的面积;
(2)是否存在经过点E的直线l将正方ABCD分成面积相等的两部分?若存在,求出直线l的解析式;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:江苏省徐州市2007年初中毕业、升学考试数学试题 题型:044

如图,直线l1∶y=-x+1与两直线l2∶y=2x、l3∶y=x分别交于M、N两点.设点P为x轴上的一点,过点P的直线l∶y=-x+b与直线l2l3分别交于A、C两点,以线段AC为对角线作正方形ABCD.

(1)写出正方形ABCD个顶点的坐标(用b表示);

(2)当点P从原点O出发,沿着x轴的正方向运动时,设正方形ABCD与△OMN重叠部分的面积为S,求S与b之间的函数关系式,并写出相应自变量的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线与直线分别交于M、N两点,设P为轴上的一点,过点P的直线与直线分别交于A、C两点,以线段AC为对角线作正方形ABCD.

    (1)写出正方形ABCD各顶点的坐标(用b表示);

    (2)当点P从原点O出发,沿着轴的正方向运动时,设正方形ABCD与△OMN重叠部分的面积为S,求S与b之间的函数关系式,并写出相应自变量b的取值范围.

查看答案和解析>>

同步练习册答案