精英家教网 > 初中数学 > 题目详情

三角形ABC三个内角的平分线交于O点,且OD⊥AB,垂足为D,OD=a,AB=5,BC=7,CA=9,S△ABC=


  1. A.
    21a
  2. B.
    数学公式a
  3. C.
    42a
  4. D.
    不能计算
B
分析:首先根据题意作图,然后连接OA,OB,OC,过点O作DE⊥BC于E,作OF⊥AC于F,由三角形ABC三个内角的平分线交于O点,根据角平分线的性质,即可得OE=OF=OD=a,又由S△ABC=S△OAB+S△OBC+S△OAC,即可求得答案.
解答:解:如图:连接OA,OB,OC,过点O作OE⊥BC于E,作OF⊥AC于F,
∵△ABC三个内角的平分线交于O点,OD⊥AB,
∴OE=OD,OF=OD,
∴OE=OF=OD=a,
∵AB=5,BC=7,CA=9,
∴S△ABC=S△OAB+S△OBC+S△OAC=AB•OD+BC•OE+AC•OF=×5×a+×7×a+×9×a=a.
故选B.
点评:此题考查了角平分线的性质.此题难度适中,解题的关键是注意数形结合思想的应用,注意辅助线的作法.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

22、已知:如图所示,在△ABC中,AB=AC,∠A=36°,仿照图(1),请你设计两种不同的分法,将△ABC分割成3个三角形,使得每个三角形都是等腰三角形.(图(2),图(3)供画图用,作图工具不限,不要求写出画法,不要求说明理由,要求标出所分得的每个等腰三角形的三个内角的度数)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•高淳县一模)如图①,若点P是△ABC内或边上一点,且∠BPC=2∠A,则称点P是△ABC内∠A的二倍角点.
(1)如图②,点O等边△ABC的外心,连接OB、OC.
①求证:点O是△ABC内∠A的一个二倍角点;
②作△BOC的外接圆,求证:弧BOC上任意一点(B、C除外)都是△ABC内∠A的二倍角点.
(2)如图③,在△ABC的边AB上求作一点M,使点M是△ABC内∠A的一个二倍角点(要求用尺规作图,保留作图痕迹,并写出作法).
(3)在任意三角形形内,是否存在一点P同时为该三角形内三个内角的二倍角点?请直接写出结论,不必说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,P为等边△ABC内一点,∠APB:∠APC:∠CPB=5:6:7,则以PA、PB、PC为三边构成的一个三角形的三个内角从小到大度数之比(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

学习了勾股定理的逆定理,我们知道:在一个三角形中,如果两边的平方和等于第三边的平方,那么这个三角形为直角三角形.类似地,我们定义:对于任意的三角形,设其三个角的度数分别为x°、y°和z°,若满足x2+y2=z2,则称这个三角形为勾股三角形.
(1)根据“勾股三角形”的定义,请你直接判断命题:“直角三角形是勾股三角形”是真命题还是假命题?
(2)已知某一勾股三角形的三个内角的度数从小到大依次为x°、y°和z°,且xy=2160,求x+y的值;
(3)如图,△ABC内接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直径BE交AC于点D.
①求证:△ABC是勾股三角形;
②求DE的长.

查看答案和解析>>

同步练习册答案