精英家教网 > 初中数学 > 题目详情

作业宝如图,在下面直角坐标系中,已知A(0,a),B(b,0),C(3,c)三点,其中a,b,c满足关系式|a-2|+数学公式=0,(c-4)2≤0;如果在第二象限内有一点P(m,数学公式),求使四边形ABOP的面积与△ABC的面积相等的点P的坐标


  1. A.
    P(-3,数学公式
  2. B.
    P(-2,数学公式
  3. C.
    P(-4,数学公式
  4. D.
    P(-2.5,数学公式
A
分析:本题可根据“两个非负数相加,和为0,则这两个非负数的值为0”解出a,b的值;
再根据题意(c-4)2≤0及非负数的意义(c-4)2≥0,解出c的值;把abc的值代入面积的公式中列出等式,求出m的值,代入求P的坐标即可.
解答:依题意得:a-2=0,b-3=0,c-4=0,
∴a=2,b=3,c=4,△ABC的各顶点坐标为:A(0,2),B(3,0),C(3,4);
∵S△ABC=×4×3=6;
SABOP=S△APO+S△ABO=×AO×|m|+×AO×OB=×2|m|+×2×3=|m|+3=6;且四边形ABOP的面积与△ABC的面积相等,
∴|m|=3,m=±3.结合各选项,因此选A.
点评:本题考查了点的坐标的确定及非负数的性质,解此类题目时可根据非负数的性质分别求出各个数的值,再根据面积相等即可得出答案.解此类题目时刻将不规则图形拆成两个三角形的和,再进行计算即可.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

27、如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:解题升级  解题快速反应一典通  九年级级数学 题型:044

数学课上,老师出示图和下面条件:

如图,在直角坐标平面内,O为坐标原点,A点坐标为(1,0),点B在x轴上且在点A的右侧,AB=OA.过点A和B作x轴的垂线,分别交二次函数y=x2的图像于点C和D.直线OC交BD于点M,直线CD交y轴于点H.记点C、D的横坐标分别为xC、xD,点H的纵坐标为yH

同学发现两个结论:①S△CMD∶S梯形ABMC=2∶3;②数值相等关系:xC·xD=-yH

(1)请你验证结论①和结论②成立;

(2)请你研究:如果将上述条件“A点坐标为(1,0)”改为“A点坐标为(t,0)(t>0)”,其他条件不变,结论①是否仍成立?(请说明理由)

(3)进一步研究:如果将上述条件“A点坐标为(1,0)”改为“A点坐标为(t,0)(t>0)”,又将条件“y=x2”改为“y=ax2(a>0)”,其他条件不变,那么xC、xD和yH有怎样的数值关系?(写出结果并说明理由)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

科目:初中数学 来源:2011年江苏省盐城市建湖县上冈实验初中中考数学模拟试卷(解析版) 题型:解答题

如图(1),在正方形ABCD中,E是AB上一点,F是AD延长线上一点,且DF=BE.容易证得:CE=CF;
(1)在图1中,若G在AD上,且∠GCE=45°.试猜想GE、BE、GD三线段之间的数量关系,并证明你的结论.
(2)运用(1)中解答所积累的经验和知识,完成下面两题:
①如图(2),在四边形ABCD中∠B=∠D=90°,BC=CD,点E,点G分别是AB边,AD边上的动点.若∠BCD=α°,∠ECG=β°,试探索当α和β满足什么关系时,图(1)中GE、BE、GD三线段之间的关系仍然成立,并说明理由.
②在平面直角坐标中,边长为1的正方形OABC的两顶点A、C分别在y轴、x轴的正半轴上,点O在原点.现将正方形OABC绕O点顺时针旋转,当A点第一次落在直线y=x上时停止旋转,旋转过程中,AB边交直线y=x于点M,BC边交x轴于点N(如图(3)).设△MBN的周长为p,在旋转正方形OABC的过程中,p值是否有变化?请证明你的结论.

查看答案和解析>>

同步练习册答案