已知
ABCD,对角线AC与BD相交于点O,点P在边AD上,过点P分
别作PE⊥AC、PF⊥BD,垂足分别为E、F,PE=PF.
(1)如图,若PE=
,EO=1,求∠EPF的度数;
(2)若点P是AD的中点,点F是DO的中点,BF =BC+3
-4,求BC的长.
![]()
(1)60°(2)4
【解析】解:(1)连接PO ,
![]()
∵ PE=PF,PO=PO,PE⊥AC、PF⊥BD,
∴ Rt△PEO≌Rt△PFO(HL)。
∴∠EPO=∠FPO。
在Rt△PEO中, tan∠EPO=
=
,
∴ ∠EPO=30°。∴ ∠EPF=60°。
(2)∵点P是AD的中点,∴ AP=DP。
![]()
又∵ PE=PF,∴ Rt△PEA≌Rt△PFD(HL)。
∴∠OAD=∠ODA。∴ OA=OD。
∴ AC=2OA=2OD=BD。∴
ABCD是矩形。
∵ 点P是AD的中点,点F是DO的中点,∴ AO∥PF。
∵ PF⊥BD,∴ AC⊥BD。∴
ABCD是菱形。∴
ABCD是正方形。
∴ BD=
BC。
∵ BF=
BD,∴BC+3
-4=
BC,解得,BC=4。
(1)连接PO,利用解直角三角形求出∠EPO=30°,再利用“HL”证明△PEO和△PFO全等,根据全等三角形对应角相等可得∠FPO=∠EPO,从而得解。
(2)根据条件证出
ABCD是正方形。根据正方形的对角线与边长的关系列式计算即可得解。
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com