精英家教网 > 初中数学 > 题目详情
(2005•潍坊)如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.

【答案】分析:(1)可通过证两组对应角相等来证两三角形相似.
(2)根据(1)中得出的相似三角形即可得出AE,DE,EF这三条线段的比例关系,有了AD,DE的长,即可求出EF的值.
(3)可通过证角的关系来得出三角形的形状.
解答:(1)证明:连接两圆的相交弦CE,
在圆O1中,∠EFD=∠DCE,
在圆O中,∠BAE=∠DCE,
∴∠EFD=∠BAE.
∵AE是∠BAC角平分线,
∴∠BAE=∠CAE.
∴∠CAE=∠EFD.
∵∠AEF=∠FED,
∴△AEF∽△FED.

(2)解:∵△AEF∽△FED,

∴EF2=AE•DE=(AD+DE)•DE=(6+3)×3=27,
∴EF=3

(3)解:△ABE为等腰三角形.理由如下:
∵ABCE是圆内接四边形,
∴∠FCE=∠ABE.
∵DF∥BE,∠FDE=∠AEB,
又∵∠FCE=∠EDF,
∴∠AEB=∠ABE.
∴△ABE为等腰三角形.
点评:本题主要考查了圆周角定理,相似三角形的判定和性质,等腰三角形的性质等知识点.根据圆周角得出相关的角相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2005年全国中考数学试题汇编《三角形》(13)(解析版) 题型:解答题

(2005•潍坊)如图,AD是△ABC的角平分线,延长AD交△ABC的外接圆O于点E,过C、D、E三点的圆O1交AC的延长线于点F,连接EF、DF.
(1)求证:△AEF∽△FED;
(2)若AD=6,DE=3,求EF的长;
(3)若DF∥BE,试判断△ABE的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源:2005年山东省潍坊市中考数学试卷(课标卷)(解析版) 题型:填空题

(2005•潍坊)如图,是格点(横、纵坐标都为整数的点)三角形,请在图中画出与全等的一个格点三角形.

查看答案和解析>>

科目:初中数学 来源:2005年山东省潍坊市中考数学试卷(课标卷)(解析版) 题型:选择题

(2005•潍坊)如图,等腰梯形ABCD中,AB∥CD,AB=2CD,AC交BD于点O,点E、F分别为AO、BO的中点,则下列关于点O成中心对称的一组三角形是( )

A.△ABO与△CDO
B.△AOD与△BOC
C.△CDO与△EFO
D.△ACD与△BCD

查看答案和解析>>

科目:初中数学 来源:2005年山东省潍坊市中考数学试卷(课标卷)(解析版) 题型:选择题

(2005•潍坊)如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需满足下列条件中的( )

A.∠1=∠2
B.∠2=∠AFD
C.∠1=∠AFD
D.∠1=∠DFE

查看答案和解析>>

同步练习册答案