精英家教网 > 初中数学 > 题目详情

如图,AC⊥CD,垂足为点C,BD⊥CD,垂足为点D,AB与CD交于点O.若AC=1,BD=2,CD=4,则AB=________.

5
分析:首先过点B作BE∥CD,交AC的延长线于点E,易证得四边形BDCE是矩形,然后由勾股定理求得答案.
解答:解:过点B作BE∥CD,交AC的延长线于点E,
∵AC⊥CD,BD⊥CD,
∴AC∥BD,∠D=90°,
∴四边形BDCE是平行四边形,
∴平行四边形BDCE是矩形,
∴CE=BD=2,BE=CD=4,∠E=90°,
∴AE=AC+CE=1+2=3,
∴在Rt△ABE中,AB==5.
故答案为:5.
点评:此题考查了矩形的判定与性质以及勾股定理.此题难度不大,注意掌握辅助线的作法,注意掌握数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:阅读理解

29、先阅读理解两条正确结论,并用这两条结论完成应用与探究.阅读:
正确结论1.在图甲△ABC中,如果D是AB的中点,DE∥BC交AC于点E,那么E也是AC的中点,及DE是中位线.
正确结论2.在图乙梯形ABCD中,如果E为腰AB的中点且EF∥AD∥BC.那么F也是CD的中点,及EF是中位线.
应用:如图丙,已知,MN是平行四边形ABCD外的一条直线,AA′、BB′、CC′、DD′都垂直于MN,A′、B′、C′、D′为垂足.求证:AA′+CC′=BB′+DD′.
探究:如图丁,若直线MN向上移动,使点C在直线一侧,A、B、D三点在直线另一侧,则垂线段AA′、BB′、CC′、DD′之间存在什么关系?先对结论进行猜想,然后加以证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AB为⊙O的直径,C为⊙O上一点,AD和过C点的切线互相垂直,垂足为D.
(1)求证:AC平分∠DAB;
(2)过点O作线段AC的垂线OE,垂足为E(要求:尺规作图,保留作图痕迹,不写作法);
(3)若CD=4,AC=4
5
,求垂线段OE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•南昌)如图1,小红家阳台上放置了一个晒衣架.如图2是晒衣架的侧面示意图,立杆AB、CD相交于点O,B、D两点立于地面,经测量:
AB=CD=136cm,OA=OC=51cm,OE=OF=34cm,现将晒衣架完全稳固张开,扣链EF成一条直线,且EF=32cm.
(1)求证:AC∥BD;
(2)求扣链EF与立杆AB的夹角∠OEF的度数(精确到0.1°);
(3)小红的连衣裙穿在衣架后的总长度达到122cm,垂挂在晒衣架上是否会拖落到地面?请通过计算说明理由.
(参考数据:sin61.9°≈0.882,cos61.9°≈0.471,
tan61.9°≈0.553;可使用科学记算器)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•道里区二模)如图,在平面直角坐标系内,点O为坐标原点,直线y=
1
2
x+3交x轴于点A,交y轴于点B点C(4,O),过点C作AB的垂CD,点D为垂足,直线CD交y轴于点E,
(1)求点E的坐标.
(2)连接AE,动点P从点A出发以1个单位/秒的速度沿AC向终点C运动,过点P作PP1∥CE交AE于点P1,设点P(点P不与点A,C重合时)运动的时间为t秒,PP1的长为y,求y与t之间的函数关系式(直接写出自变量t的取值范围);
(3)在(2)的条件下,点Q为P1E中点,连接DQ,当t为何值时有
PP1
DQ
=
2
5
?并求出此时同时经过P、O、E三点的圆的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•大东区一模)如图,C是以AB为直径的⊙O上一点,AD和过点C的切线互相垂直,垂足为点D.过点O作线段AC的垂线段OE,垂足为点E,
(1)求证:AC平分∠BAD;
(2)若CD=4,AC=4
5
,求垂线段OE的长.

查看答案和解析>>

同步练习册答案