精英家教网 > 初中数学 > 题目详情
精英家教网如图,⊙O的直径CD=10,弦AB=8,AB⊥CD,垂足为M,则DM的长为
 
分析:连接OA,根据垂径定理可知AM的长,根据勾股定理可将OM的长求出,从而可将DM的长求出.
解答:精英家教网解:连接OA,
∵AB⊥CD,AB=8,
∴根据垂径定理可知AM=
1
2
AB=4,
在Rt△OAM中,OM=
OA2-AM2
=
52-42
=3,
∴DM=OD+OM=8.
故答案为:8.
点评:本题考查的是垂径定理及勾股定理,根据题意作出辅助线,构造出直角三角形,利用勾股定理求解是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF等于(  )
A、80°B、50°C、40°D、20°

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦EF的中点G,∠OEF=34°,则∠DCF的度数是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,⊙O的直径CD过弦EF的中点G,∠EOG=60°,则∠DCF的度数为
30°
30°

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•江都市模拟)如图,⊙O的直径CD⊥EF,∠OEG=30°,则∠DCF=
30
30
°.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,⊙O的直径CD过弦AB的中点M,∠ACD=28°,则∠B=
 
度.

查看答案和解析>>

同步练习册答案