精英家教网 > 初中数学 > 题目详情

如图,在直角梯形ABCD中,AD∥BC,∠B=90°,E为AB上一点,且DE平分∠ADC,CE平分∠BCD,则下列结论中正确的有
①DE⊥EC;②∠ADE=∠BEC;③AD•BC=BE•AE;④CD=AD+BC.


  1. A.
    1个
  2. B.
    2个
  3. C.
    3个
  4. D.
    4个
D
分析:①运用角平分线的性质及平行线的性质,易得到∠ADC+∠BCD=90°,再通过三角形的内角和为180°,求得∠CED=90°,问题得证;
②先由平行线的性质得出∠A=180°-∠B=90°,再根据同角的余角相等即可证明∠ADE=∠BEC;
③先根据有两角对应相等的两三角形相似得出△ADE∽△BEC,再利用相似三角形的对应边成比例,即可证得AD•BC=BE•AE;
④过E作EF⊥CD于点F.通过角角边定理证得△AED≌△FED,△BCE≌△FCE,再利用全等三角形的性质证得BC=FC,AD=FD.问题得解.
解答:①∵AD∥BC,
∴∠ADC+∠BCD=180°,
∵DE平分∠ADC,CE平分∠BCD,
∴∠ADE=∠CDE,∠DCE=∠BCE,
∴∠DCE+∠CDE=90°,
∴DE⊥EC;
故本选项正确;
②∵AD∥BC,∠B=90°,
∴∠A=180°-∠B=90°,
∴∠ADE+∠AED=90°.
由①知∠DEC=90°,
∴∠BEC+∠AED=90°,
∴∠ADE=∠BEC;
故本选项正确;
③在△ADE与△BEC中,

∴△ADE∽△BEC,
=
∴AD•BC=BE•AE;
故本选项正确;
④过E作EF⊥CD于点F,
∵DE平分∠ADC,
∴∠ADE=∠CDE.
在△AED与△FED中,

∴△AED≌△FED(AAS),
∴AD=FD,
同理,△BCE≌Rt△FCE,
∴BC=FC,
又∵CF+FD=BC,
∴AD+BC=DC,
即CD=AD+BC;
故本选项正确.
故选D.
点评:本题主要考查了直角梯形的性质、全等三角形的判定与性质、相似三角形的判定与性质.解决本题的关键是熟练掌握三角形全等、相似的三角形判定定理、性质定理,做到灵活运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在直角梯形ABCD中,AD∥BC,CD⊥BC,E为BC边上的点.将直角梯形ABCD沿对角线BD折叠,使△ABD与△EBD重合(如图中阴影所示).若∠A=130°,AB=4cm,则梯形ABCD的高CD≈
3.1
cm.(结果精确到0.1cm)

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在直角梯形ABCD中,AB∥DC,∠D=90°,AC⊥BC,AB=10cm,BC=6cm,F点以2cm/秒的速度在线段AB上由A向B匀速运动,E点同时以1cm/秒的速度在线段BC上由B向C匀速运动,设运动时间为t秒(0<t<5).
(1)求证:△ACD∽△BAC;
(2)求DC的长;
(3)设四边形AFEC的面积为y,求y关于t的函数关系式,并求出y的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

(1998•大连)如图,在直角梯形ABCD中.AD∥BC,DC⊥BC,且BC=3AD.以梯形的高AE为直径的⊙O交AB于点F,交CD于点G、H.过点F引⊙O的切线交BC于点N.
(1)求证:BN=EN;
(2)求证:4DH•HC=AB•BF;
(3)设∠GEC=α.若tan∠ABC=2,求作以tanα、cotα为根的一元二次方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,DC∥AB,∠ADC=90°,AB=3a,CD=2a,AD=2,点E、F分别是腰AD、BC上的动点,点G在AB上,且四边形AEFG是矩形.设FG=x,矩形AEFG的面积为y.
(1)求y与x之间的函数关式,并写出自变量x的取值范围;
(2)在腰BC上求一点F,使梯形ABCD的面积是矩形AEFG的面积的2倍,并求出此时BF的长;
(3)当∠ABC=60°时,矩形AEFG能否为正方形?若能,求出其边长;若不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角梯形ABCD中,AB∥CD,∠C=90°,AB=6cm,CD=10cm,AD=5cm,动点P、Q分别从点A、C同时出发,点P以2cm/s的速度向点B移动,点Q以1cm/s的速度向点D移动,当一个动点到达终点时另一个动点也随之停止运动.
(1)经过几秒钟,点P、Q之间的距离为5cm?
(2)连接PD,是否存在某一时刻,使得PD恰好平分∠APQ?若存在,求出此时的移动时间;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案