精英家教网 > 初中数学 > 题目详情

如图,△ABC内接于⊙O,弦CM⊥AB于M,CN是直径,F为数学公式的中点,
求证:CF平分∠MCN.

证明:连接OF,
∵F是的中点,
∴OF平分AB.
∴OF⊥AB.
又∵CM⊥AB,
∴CM∥OF.
∴∠MCF=∠OFC.
又∵OC=OF,
∴∠OCF=∠OFC.
∴∠MCF=∠OCF.
∴CF平分∠MCN.
分析:连接OF,由垂径定理得到OF⊥AB,由平行线的性质得到∠MCF=∠OFC,由等边对等角得到∠OCF=∠OFC,故∠MCF=∠OCF.即CF平分∠MCN.
点评:本题利用了垂径定理,两直线平行,内错角相等,等边对等角求解.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

15、如图,△ABC内接于⊙O,∠BAC=120°,AB=AC=4.BD为⊙O的直径,则BD=
8

查看答案和解析>>

科目:初中数学 来源: 题型:

21、如图,△ABC内接于⊙O,AB为⊙O的直径,点D在AB的延长线上,∠A=∠D=30°.
(1)判断DC是否为⊙O的切线,并说明理由;
(2)证明:△AOC≌△DBC.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网已知:如图,△ABC内接于⊙O,连接AO并延长交BC于点D,若AO=5,BC=8,∠ADB=90°,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图,△ABC内接于⊙O,∠A=30°,若BC=4cm,则⊙O的直径为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC内接于⊙O,AD⊥BC于点D,求证:∠BAD=∠CAO.

查看答案和解析>>

同步练习册答案