分析 (1)把(-1,0)、(3,0)代入y=x2+bx+c中,得到关于b、c的二元一次方程组,解即可;
(2)由于CD∥x轴,而且抛物线关于对称轴对称,于是易知l也是CD的垂直平分线,进而可得MC=MD,从而可证.
解答
解:(1)把(-1,0)、(3,0)代入y=x2+bx+c中,得
$\left\{\begin{array}{l}{1-b+c=0}\\{9+3b+c=0}\end{array}\right.$
解得$\left\{\begin{array}{l}{b=-2}\\{c=-3}\end{array}\right.$,
故b=-2,c=-3;
(2)∵CD∥x轴,抛物线关于对称轴l对称,
∴l⊥x轴,
∴l是CD的垂直平分线,
∴MC=MD,
∵抛物线的解析式为:y=x2-2x-3=(x-1)2-4,
∴点M的坐标为:(1,-4),点C的坐标为:(0,-3),
∴点D的坐标为:(2,-3),
∴CD=2,CM=DM=$\sqrt{2}$,
∴CM2+DM2=CD2,
∴△MCD是等腰直角三角形.
点评 本题考查了待定系数法求函数解析式、二次函数的性质,解题的关键是注意二次函数具有对称性.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com