精英家教网 > 初中数学 > 题目详情
设一次函数y=k1x+b1(k1≠0)的图象为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=﹣2x﹣1平行的直线l的函数表达式,并画出直线l的图象;
(2)设(1)中的直线l分别与x轴、y轴交于A、B两点,直线y=﹣2x﹣1分别与x轴、y轴交于C、D两点,求四边形ABCD的面积.
解:(1)∵直线l与直线y=﹣2x﹣1平行,
∴设直线l的解析式为y=﹣2x+b,
∵过点P(1,4),
∴4=﹣2×1+b,
解得:b=6,
∴直线l的解析式为:y=﹣2x+6.
(2)令y=﹣2x﹣1=0,得x=﹣
令x=0,得y=﹣1,
∴C点的坐标为(﹣,0),D点的坐标为(0,﹣1),
令y=﹣2x+6=0,得x=3,
令x=0,得y=6,
∴点A的坐标(3,0),
点B的坐标为(0,6),
∴S四边形ABCD=S△ABC+S△DCB
=××6+××1
=
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两知直线,给出它们平行的定义:
设一次函数y=k1x+b(k1≠0)的图象为直线l1,一次函数y=k2x+b(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.如图,将直线y=4x沿y轴向下平移后,得到的直线与x轴交于点A(
9
4
,0
),与精英家教网双曲线y=
k
x
(x>0)交于点B.
(1)求直线AB的解析式;
(2)若点B的纵坐标为m,求双曲线解析式(用含m的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2精英家教网我们就称直线l1与直线l2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设直线l分别与y轴、x轴交于点A、B,如果直线m:y=kx+t(t>0)与直线l平行且交x轴于点C,求出△ABC的面积S关于t的函数表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网设一次函数y=k1x+b1(k1≠0)的图象为l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.解答下面的问题:
(1)求过点P(1,4)且与已知直线y=-2x-1平行的直线l的函数表达式,并画出直线l的图象;
(2)设(1)中的直线l分别与x轴、y轴交于A、B两点,直线y=-2x-1分别与x轴、y轴交于C、D两点,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•定海区模拟)设一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=
k1+k2
2
x+
b1+b2
2
为此两个函数的平均函数.
(1)若一次函数y=ax+1,y=-4x+3的平均函数为y=3x+2,求a的值;
(2)若由一次函数y=x+1,y=kx+1的图象与x轴围成的三角形面积为1,求这两个函数的平均函数.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读下面的材料:
在平面几何中,我们学过两条直线平行的定义.下面就两个一次函数的图象所确定的两条直线,给出它们平行的定义:设一次函数y=k1x+b1(k1≠0)的图象为直线l1,一次函数y=k2x+b2(k2≠0)的图象为直线l2,若k1=k2,且b1≠b2,我们就称直线l1与直线l2互相平行.
解答下面的问题:
(1)已知一次函数y=-2x的图象为直线l1,求过点P(1,4)且与已知直线l1平行的直线l2的函数表达式,并在坐标系中画出直线l1和l2的图象;
(2)设直线l2分别与y轴、x轴交于点A、B,过坐标原点O作OC⊥AB,垂足为C,求l1和l2两平行线之间的距离OC的长;
(3)若Q为OA上一动点,求QP+QB的最小值,并求取得最小值时Q点的坐标.

查看答案和解析>>

同步练习册答案