精英家教网 > 初中数学 > 题目详情
当实数 x 的取值使得有意义时,函数 y= 4x+1中,y 的取值范围是    
[     ]
A. y≥-7      
B. y≥9      
C. y>9      
D. y≤9
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,在直角坐标系中,半径为2cm的动圆M与y轴交于A、B两点,且保持弦AB长为定值2cm,圆精英家教网M与x轴没有交点,且圆心M在第一象限内,P是x轴正半轴上一动点,MQ⊥AB于Q,且MP=3cm,设OA=ycm,OP=xcm.
(1)求x、y所满足的关系式,并写出x的取值范围;
(2)当△MOP为等腰三角形时,求相应x的值;
(3)是否存在大于2的实数x,使△MQO∽△OMP?若存在,求出相应的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,射线OA⊥射线OB,半径r=2cm的动圆M与OB相切于点Q(圆M与OA没有公共点),P是OA上的动点,且PM=3cm,设OP=xcm,OQ=ycm.
(1)求x、y所满足的关系式,并写出x的取值范围;
(2)当△MOP为等腰三角形时,求相应的x的值;
(3)是否存在大于2的实数x,使△MQO∽△OMP?若存在,求相应x的值,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程a(2x+a)=x(1-x)的两个实数根为x1,x2,设S=
x1
+
x2

(1)当a=-2时,求S的值;
(2)当a取什么整数时,S的值为1;
(3)是否存在负数a,使S2的值不小于25?若存在,请求出a的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线y=-x2+2kx-
32
k2+2k-2
(k是实数)与x轴有交点,将此抛物线向左平移1个单位,再向上平移4个单位,得到新的抛物线E,设抛物线E与x轴的交点为B,C,如图.
(1)求抛物线E所对应的函数关系式,并求出顶点A的坐标;
(2)连接AB,把AB所在的直线平移,使它经过点C,得到直线l,点P是l上一动点(与点C不重合).设以点A,B,C,P为顶点的四边形面积为S,点P的横坐标为t,当0<S≤16时,求t的取值范围;
(3)点Q是直线l上的另一个动点,以点Q为圆心,R为半径作圆Q,当R取何值时,圆Q与直线AB相切?相交?相离?直接给出结果.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•门头沟区一模)已知:关于x的一元二次方程x2-(1+2k)x+k2-2=0有两个实数根.
(1)求k的取值范围;
(2)当k为负整数时,抛物线y=x2-(1+2k)x+k2-2与x轴的交点是整数点,求抛物线的解析式;
(3)若(2)中的抛物线与y轴交于点A,过A作x轴的平行线与抛物线交于点B,连接OB,将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△OAB的内部(不包括△OAB的边界),求n的取值范围.

查看答案和解析>>

同步练习册答案