精英家教网 > 初中数学 > 题目详情

已知x1,x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,其满足(3x1-x2)(x1-3x2)=-80.求实数a的所有可能值.

解:∵x1,x2是关于x的一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根,
∴△≥0,即(3a-1)2-4(2a2-1)=a2-6a+5≥0
所以a≥5或a≤1.…
∴x1+x2=-(3a-1),x1•x2=2a2-1,
∵(3x1-x2)(x1-3x2)=-80,即3(x12+x22)-10x1x2=-80,
∴3(x1+x22-16x1x2=-80,
∴3(3a-1)2-16(2a2-1)=-80,
整理得,5a2+18a-99=0,
∴(5a+33)(a-3)=0,解得a=3或a=-
当a=3时,△=9-6×3+5=-4<0,故舍去,
当a=-时,△=(-2-6×(-)+6=(2+6×+6>0,
∴实数a的值为-
分析:根据△的意义由一元二次方程x2+(3a-1)x+2a2-1=0的两个实数根得到△≥0,即(3a-1)2-4(2a2-1)=a2-6a+5≥0,根据根与系数的关系得到x1+x2=-(3a-1),x1•x2=2a2-1,由(3x1-x2)(x1-3x2)=-80变形得到3(x1+x22-16x1x2=-80,于是有3(3a-1)2-16(2a2-1)=-80,解方程得到a=3或a=-,然后代入△验算即可得到实数a的值.
点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:如果方程的两根为x1,x2,则x1+x2=-,x1•x2=.也考查了一元二次方程根的判别式以及代数式的变形能力.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程(x-2)(x-m)=(p-2)(p-m)的两个实数根.
(1)求x1,x2的值;
(2)若x1,x2是某直角三角形的两直角边的长,问当实数m,p满足什么条件时,此直角三角形的面积最大?并求出其最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、已知x1,x2是关于x的一元二次方程x2-6x+k=0的两个实数根,且x12x22-x1-x2=115.
(1)求k的值;
(2)求x12+x22+8的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

21、已知x1、x2是关于x的方程x2-2x+t+2=0的两个不相等的实数根.
(1)求t的取值范围;
(2)设S=x1•x2,求S关于t的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1,x2是关于x的方程x2+mx+n=0的两根,x1+1,x2+1是关于x的方程x2+nx+m=0的两根,求m,n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x1、x2是关于x的一元二次方程x2+(3a-1)x+2a2=0的两个实数根,使得(3x1-x2)(x1-3x2)=-80成立,求其实数a的可能值.

查看答案和解析>>

同步练习册答案