精英家教网 > 初中数学 > 题目详情

如图,四边形ABCD中,∠A=∠C=90°,∠ABC=60°,AD=4,CD=10,则BD的长等于作业宝


  1. A.
    数学公式
  2. B.
    数学公式
  3. C.
    12
  4. D.
    数学公式
A
分析:分别延长AD、BC,两条延长线相交于点E,构造特殊三角形ABE,其中有一个锐角是60°,∠A是90°,那么另一个锐角是30°,在Rt△CDE中,∠E=30°,有CD=10,可求DE,那么AE的长就求出,在Rt△ABE中,利用∠E的正切值可求出AB,在Rt△ABD中,再利用勾股定理可求斜边BD的长.
解答:解:延长AD、BC,两条延长线相交于点E,
∵在Rt△ABE中,∠A=90°,∠B=60°,
∴∠E=90°-60°=30°.
∴在Rt△DCE中,∠E=30°,CD=10,
∴DE=2CD=20,
∴AE=AD+DE=20+4=24.
∴在Rt△ABE中,AB=AE•tan∠E=AE•tan30°=×24=8
∴在Rt△ABD中,
BD====4
故选A.
点评:关键是作辅助线,构造特殊直角三角形,然后利用了勾股定理、特殊三角函数值解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC与BD互相垂直平分于点O,设AC=2a,BD=2b,请推导这个四边形的性质.(至少3条)
(提示:平面图形的性质通常从它的边、内角、对角线、周长、面积等入手.)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD的对角线AC、BD交于点P,过点P作直线交AD于点E,交BC于点F.若PE=PF,且AP+AE=CP+CF.
(1)求证:PA=PC.
(2)若BD=12,AB=15,∠DBA=45°,求四边形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,四边形ABCD,AB=AD=2,BC=3,CD=1,∠A=90°,求∠ADC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD为正方形,E是BC的延长线上的一点,且AC=CE,求∠DAE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,四边形ABCD是正方形,点E是BC的中点,∠AEF=90°,EF交正方形外角的平分线CF于F.

(I)求证:AE=EF;
(Ⅱ)若将条件中的“点E是BC的中点”改为“E是BC上任意一点”,其余条件不变,则结论AE=EF还成立吗?若成立,请证明;若不成立,请说明理由.

查看答案和解析>>

同步练习册答案