精英家教网 > 初中数学 > 题目详情

如图所示,在△ABC中,AB=AC,M,N分别是AB,AC的中点,D,E为BC上的点,连接DN,EM.若AB=10cm,BC=16cm,DE=4cm,则图中阴影部分的面积为


  1. A.
    2
  2. B.
    3
  3. C.
    4
  4. D.
    6
A
分析:连接MN,过点A作AF⊥BC于F,根据三角形的中位线平行于第三边并且等于第三边的一半可得MN∥BC,MN=BC,再根据等腰三角形三线合一的性质求出BF=BC,然后利用勾股定理列式求出AF,设ME、DN相交于O,然后根据△MON和△EOD相似,利用相似三角形对应边成比例求出MN:DE,再求出点O到DE的距离,然后根据三角形的面积公式列式计算即可得解.
解答:解:如图,连接MN,过点A作AF⊥BC于F,
∵M,N分别是AB,AC的中点,
∴MN∥BC,MN=BC=×16=8cm,
∵AB=AC,
∴BF=BC=×16=8cm,
在Rt△ABF中,AF===6cm,
设ME、DN相交于O,
∵MN∥BC,
∴△MON∽△EOD,
==2,
∴点O到DE的距离为×(×6)=1cm,
∴阴影部分的面积=×4×1=2cm2
故选A.
点评:本题考查了相似三角形的判定与性质,等腰三角形三线合一的性质,勾股定理的应用,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理并作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,∠A=47°,∠C=77°,DE∥BC,BF平分∠ABC,BF交DE于点F,求∠BFE的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,D是AC的中点,E是线段BC延长线上一点,过点A作AF∥BC交ED的延长线于点F,连接AE,CF.
求证:(1)四边形AFCE是平行四边形;
(2)FG•BE=CE•AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

15、如图所示,在△ABC中,DM、EN分别垂直平分AB和AC,交BC于D、E,若∠DAE=50°,则∠BAC=
115
度,若△ADE的周长为19cm,则BC=
19
cm.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,在△ABC中,AB=AC,DE是边AB的垂直平分线,交AB于E,交AC于D,若△BCD的周长为18cm,△ABC的周长为30cm,那么BE的长为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在△ABC中,BC=7cm,AB=25cm,AC=24cm,P点在BC上从B点向C点运动(不包括点C),点P的运动速度为2cm∕s;Q点在AC上从C点向点A运动(不包括点A),运动速度为5cm∕s,若点P、Q分别从B、C同时运动,请解答下面的问题,并写出主要过程.
(1)经过多长时间后,P、Q两点的距离为5
2
cm?
(2)经过多长时间后,△PCQ面积为15cm2

查看答案和解析>>

同步练习册答案