精英家教网 > 初中数学 > 题目详情

如图,AD是△ABC的角平分线,DE⊥AB,DF⊥AC,垂足分别是点E,F,连接EF,交AD于点G,则AD与EF垂直吗?证明你的结论.

解:AD平分∠BAC,DE⊥AB,DF⊥AC,
∴DE=DF(角平分线的性质定理),
在Rt△AED和Rt△AFD中,
∴Rt△AED≌Rt△AFD(HL),
∴AE=AF,
又∵AD平分∠BAC,
∴AD⊥EF(等腰三角形的三线合一).
分析:根据角平分线上的点到角的两边的距离相等可得DE=DF,再利用“HL”证明Rt△AED和Rt△AFD全等,根据全等三角形对应边相等可得AE=AF,然后根据等腰三角形三线合一的性质解答即可.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,全等三角形的判定与性质,等腰三角形三线合一的性质,熟记性质是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

14、如图,AD是△ABC的高线,且AD=2,若将△ABC及其高线平移到△A′B′C′的位置,则A′D′和B′D′位置关系是
垂直
,A′D′=
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC是角平分线,DE⊥AB于点E,DF⊥AC于点F,连接EF交AD于点G,则AD与EF的位置关系是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

16、已知:如图,AD是△ABC的角平分线,且 AB:AC=3:2,则△ABD与△ACD的面积之比为
3:2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,AD是△ABC的边BC上的中线,已知AB=5cm,AC=3cm.
(1)求△ABD与△ACD的周长之差.
(2)若AB边上的高为2cm,求AC边上的高.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的中线,CE是△ACD的中线,DF是△CDE的中线,如果△DEF的面积是2,那么△ABC的面积为(  )

查看答案和解析>>

同步练习册答案