精英家教网 > 初中数学 > 题目详情

如图,已知:反比例函数数学公式(x<0)的图象经过点A(-2,4)、B(m,2),过点A作AF⊥x轴于点F,过点B作BE⊥y轴于点E,交AF于点C,连接OA.
(1)求反比例函数的解析式及m的值;
(2)若直线l过点O且平分△AFO的面积,求直线l的解析式.

解:(1)把A(-2,4)代入y=得k=-2×4=-8,
∴反比例函数的解析式为y=-
把B(m,2)代入y=-得,2m=-8,解得m=-4;

(2)∵A点坐标为(-2,4)、B点坐标为(-4,2),
而AF⊥x轴,BE⊥y轴,
∴C点坐标为(-2,2),
∴C点为AF的中点,
∵直线l过点O且平分△AFO的面积,
∴直线l过C点,
设直线l的解析式为y=kx(k≠0),
把C(-2,2)代入y=kx得2=-2k,解得k=-1,
∴直线l的解析式为y=-x.
分析:(1)先把A(-2,4)代入y=可求出k=-8,则可确定反比例函数的解析式为y=-,然后把B点坐标代入即可求出m的值;
(2)根据A、B两点坐标先求出C点坐标(-2,2),于是得到C点为AF的中点,则直线l过C点,然后利用待定系数法求出直线l的解析式.
点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数的交点坐标满足两函数的解析式.也考查了待定系数法求函数的解析式.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,已知一次函数y=kx+b的图象与反比例函数y=
m
x
的图象交于A、B两点,根据图象回答:当x为何值时,一次函数的函数值大于反比例函数的函数值?(  )
A、x<-2或0<x<4
B、-2<x<4
C、x>4或-2<x<0
D、x<-2或x>4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2007•资阳)如图,已知点A(-4,2)、B( n,-4)是一次函数y=kx+b的图象与反比例函数y=
mx
图象的两个交点:
(1)求点B的坐标和一次函数的解析式;
(2)求△AOB的面积;
(3)根据图象写出使一次函数的值小于反比例函数值的x的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数的图象经过点A,B,点A的坐标为(1,3),点B的纵坐标为1,点C的坐标为(2,0)
(1)求该反比例函数的解析式;
(2)求直线BC的解析式;
(3)当x为何值时,一次函数的函数值大于反比例函数的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知反比例函数y=
k1x
的图象与一次函数y=k2x+b的图象交于A、B两点,A(2,n),B(-1,-2).
(1)求反比例函数和一次函数的关系式;
(2)求△AOB的面积.
(3)利用图象说明反比例函数值大于一次函数值时对应的x的范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知一次函数y1=x+m(m为常数)的图象与反比例函数 y2=
k
x
(k为常数,k≠0)的图象相交于点 A(1,3).
(1)求这两个函数的解析式及其图象的另一交点B的坐标;
(2)点C(a,b)在反比例函数 y2=
k
x
的图象上,求当1≤a≤3时,b的取值范围;
(3)观察图象,写出使函数值y1≥y2的自变量x的取值范围.

查看答案和解析>>

同步练习册答案