精英家教网 > 初中数学 > 题目详情

如图,在⊙O中,直径AB与弦CD相交于点E,∠BED=60°,AE=2,BE=6,则CD的长为________.

2
分析:作OM⊥CD于点M,连接OC,在直角三角形OEM中,根据三角函数求得OM的长,然后在直角△OCM中,利用勾股定理即可求得CM的长,进而求得CD的长.
解答:作OM⊥CD于点M,连接OC.
OC=OA=OB=(AE+BE)=4
∴OE=OA-AE=4-2=2.
在Rt△OME中,sin∠OED=
∴OM=OE•sin∠OED=2×=
在Rt△OCM中,CM===
∴CD=2CM=2
点评:本题考查了垂径定理,以及勾股定理,正确求得OM的长是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,则BC=
 
cm,∠ABD=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O中,直径CD的长度为10cm,AB是弦,且AB⊥CD于M,OM=3cm,求弦AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在⊙O中,直径AB与弦CD垂直,垂足为E,连接AC,将△ACE沿AC翻折得到△ACF,直线F精英家教网C与直线AB相交于点G.
(1)证明:直线FC与⊙O相切;
(2)若OB=BG,求证:四边形OCBD是菱形.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•百色)如图,在⊙O中,直径CD垂直于弦AB,若∠C=25°,则∠ABO的度数是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•朝阳区二模)如图,在⊙O中,直径AB⊥弦CD于点H,E是⊙O上的点,若∠BEC=25°,则∠BAD的度数为(  )

查看答案和解析>>

同步练习册答案