精英家教网 > 初中数学 > 题目详情

如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,使点C落在DP(P为AB中点)所在的直线上,得到经过点D的折痕DE.则∠DEC的大小为


  1. A.
    78°
  2. B.
    75°
  3. C.
    60°
  4. D.
    45°
B
分析:连接BD,由菱形的性质及∠A=60°,得到三角形ABD为等边三角形,P为AB的中点,利用三线合一得到DP为角平分线,得到∠ADP=30°,∠ADC=120°,∠C=60°,进而求出∠PDC=90°,由折叠的性质得到∠CDE=∠PDE=45°,利用三角形的内角和定理即可求出所求角的度数.
解答:解:连接BD,
∵四边形ABCD为菱形,∠A=60°,
∴△ABD为等边三角形,∠ADC=120°,∠C=60°,
∵P为AB的中点,
∴DP为∠ADB的平分线,即∠ADP=∠BDP=30°,
∴∠PDC=90°,
∴由折叠的性质得到∠CDE=∠PDE=45°,
在△DEC中,∠DEC=180°-(∠CDE+∠C)=75°.
故选B.
点评:此题考查了翻折变换(折叠问题),菱形的性质,等边三角形的性质,以及内角和定理,熟练掌握折叠的性质是解本题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知菱形ABCD,现将三角形纸片的一个角的顶点与A重合,适当地绕点A旋转该三角形纸片,使∠EAF=∠ABC.连接AC.
(1)如图1,若∠ABC=90°,求证:CE+CF=
2
AC;
(2)如图2,若∠ABC=60°,线段CE、CF、AC三条线段的数量关系是否改变?若改变直接写出结论;若不改变请说明理由;
(3)在(2)的条件下,若菱形ABCD的周长是12,CF=1,求线段AF的长.
精英家教网

查看答案和解析>>

科目:初中数学 来源: 题型:

一张等腰直角三角形纸片ABC,∠A=90°,AB=AC=2
2
,另有一张等腰梯形纸片DEFG,DG∥EF,DE=GF.现将两张纸片叠放在一起(如图1),此时梯形的下底EF与BC边完全重合,梯形的两腰分别落在AB,AC上,且D,G恰好分别是AB,AC的中点.
(1)求BC的长及等腰梯形DEFG的面积;
(2)实验与探究(备用图供实验、探究使用)
如图2,固定△ABC,将等腰梯形DEFG以每秒1厘米的速度沿射线BC方向平行移动,宜到点E与点C重合时停止,设运动时间为x秒时,等腰梯形平移到D1EFG1的位置.
①当x为何值时,四边形DBED1是菱形,并说明理由.
②设△ABC与等腰梯形D1EFG1重叠部分的面积为y,直接写出y与x之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省兴化市九年级上学期期中考试数学试卷(解析版) 题型:选择题

如图,在一张△ABC纸片中, ∠C=90°, ∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为锐角的菱形;④正方形.那么以上图形一定能被拼成的个数为(      )

A.1       B.2         C.3          D.4

 

 

 

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省泰州市海陵区九年级上学期期末考试数学卷 题型:选择题

如图,在一张△ABC纸片中, ∠C=90°, ∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为60°的菱形;④正方形.那么以上图形一定能被拼成的个数为(      )

A.1       B.2         C.3          D.4

 

查看答案和解析>>

科目:初中数学 来源:2012届江苏省海陵区九年级第一学期期末考试数学卷 题型:选择题

如图,在一张△ABC纸片中, ∠C=90°, ∠B=60°,DE是中位线,现把纸片沿中位线DE剪开,计划拼出以下四个图形:①邻边不等的矩形;②等腰梯形;③有一个角为60°的菱形;④正方形.那么以上图形一定能被拼成的个数为(      )

 

A.1       B.2         C.3          D.4

 

查看答案和解析>>

同步练习册答案