解:(1)相似.…
在△ABD中,∠BAD=120°,AB=AD,
∴∠ABD=∠ADB=30°,
∵∠ADB+∠BPE+∠BEP=180°,
∴∠BPE+∠BEP=150°,
∵∠EPF=30°.∠BPE+∠EPF+∠DPF=180°,
∴∠BPE+∠DPF=150°,
∠BEP=∠DPF,
∴△BPE∽△DFP.
(2)①△BPE与△DFP仍相似;….
②△BPE与△PFE相似.…
证明:由(1)得△BPE∽△DFP得

,
而DP=BP,∴

又∵∠EBP=∠EPF,∴△BPE∽△PFE…
分析:(1)证明两组角相等,就可以证明是相似三角形.
(2)根据对应边成比例,夹角相等的三角形互为相似三角形可进行证明.
点评:本题考查相似三角形的判定和性质以及菱形的性质.