精英家教网 > 初中数学 > 题目详情
如图,在平面直角坐标系xOy 中,一次函数 (为常数)的图象与x轴交于点A(,0),与y轴交于点C.以直线x=1为对称轴的抛物线  ( 为常数,且≠0)经过A,C两点,并与x轴的正半轴交于点B.  
(1)求的值及抛物线的函数表达式;  
(2)设E是y轴右侧抛物线上一点,过点E作直线AC的平行线交x轴于点F.是否存在这样的点E,使得以A,C,E,F为顶点的四边形是平行四边形?若存在,求出点E的坐标及相应的平行四边形的面积;若不存在,请说明理由;  
(3)若P是抛物线对称轴上使△ACP的周长取得最小值的点,过点P任意作一条与y轴不平行的直线交抛物线于两点,试探究 是否为定值,并写出探究过程.
解:(1)∵经过点(﹣3,0),
∴0=+m,解得m=
∴直线解析式为,C(0,).
∵抛物线y=ax2+bx+c对称轴为x=1,且与x轴交于A(﹣3,0),
∴另一交点为B(5,0),
设抛物线解析式为y=a(x+3)(x﹣5),
∵抛物线经过C(0,),
=a3(﹣5),解得a=
∴抛物线解析式为y=x2+x+
(2)假设存在点E使得以A、C、E、F为顶点的四边形是平行四边形,
则AC∥EF且AC=EF.
如答图1,
(i)当点E在点E位置时,过点E作EG⊥x轴于点G,
∵AC∥EF,∴∠CAO=∠EFG,
又∵
∴△CAO≌△EFG,
∴EG=CO=,即yE=
=xE2+xE+,解得xE=2(xE=0与C点重合,舍去),
∴E(2,),SACEF=
(ii)当点E在点E′位置时,过点E′作E′G′⊥x轴于点G′,
同理可求得E′(+1,),
SACE′F′=
(3)要使△ACP的周长最小,只需AP+CP最小即可.
如答图2,连接BC交x=1于P点,因为点A、B关于x=1对称,根据轴对称性质以及两点之间线段最短,
可知此时AP+CP最小(AP+CP最小值为线段BC的长度).
∵B(5,0),C(0,),∴直线BC解析式为y=x+
∵xP=1,∴yP=3,即P(1,3).
令经过点P(1,3)的直线为y=kx+3﹣k,
∵y=kx+3﹣k,y=x2+x+
联立化简得:x2+(4k﹣2)x﹣4k﹣3=0,
∴x1+x2=2﹣4k,x1x2=﹣4k﹣3.
∵y1=kx1+3﹣k,y2=kx2+3﹣k,∴y1﹣y2=k(x1﹣x2).
根据两点间距离公式得到:
M1M2===
∴M1M2===4(1+k2).
又M1P===
同理M2P=
∴M1PM2P=(1+k2=(1+k2=(1+k2=4(1+k2).
∴M1PM2P=M1M2
=1为定值.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OA=7,AB=4,∠COA=60°,点P为x轴上的一个动点,但是点P不与点0、点A重合.连接CP,D点是线段AB上一点,连接PD.
(1)求点B的坐标;
(2)当∠CPD=∠OAB,且
BD
AB
=
5
8
,求这时点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•渝北区一模)如图,在平面直角坐标xoy中,以坐标原点O为圆心,3为半径画圆,从此圆内(包括边界)的所有整数点(横、纵坐标均为整数)中任意选取一个点,其横、纵坐标之和为0的概率是
5
29
5
29

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,等腰梯形ABCD的下底在x轴上,且B点坐标为(4,0),D点坐标为(0,3),则AC长为
5
5

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标xOy中,已知点A(-5,0),P是反比例函数y=
k
x
图象上一点,PA=OA,S△PAO=10,则反比例函数y=
k
x
的解析式为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在平面直角坐标中,四边形OABC是等腰梯形,CB∥OA,OC=AB=4,BC=6,∠COA=45°,动点P从点O出发,在梯形OABC的边上运动,路径为O→A→B→C,到达点C时停止.作直线CP.
(1)求梯形OABC的面积;
(2)当直线CP把梯形OABC的面积分成相等的两部分时,求直线CP的解析式;
(3)当△OCP是等腰三角形时,请写出点P的坐标(不要求过程,只需写出结果).

查看答案和解析>>

同步练习册答案