精英家教网 > 初中数学 > 题目详情

已知:抛物线y=ax2+(a-2)x-2过点A(3,4).
(1)求抛物线的解析式;
(2)将抛物线y=ax2+(a-2)x-2在直线y=-1下方的部分沿直线y=-1翻折,图象其余的部分保持不变,得到的新函数图象记为G.点M(m,y1)在图象G上,且y1≤0.
①求m的取值范围;
②若点N(m+k,y2)也在图象G上,且满足y2≥4恒成立,则k的取值范围为______.

解:(1)∵抛物线y=ax2+(a-2)x-2过点A(3,4),
∴4=9a+3(a-2)-2,解得a=1,
∴抛物线的解析式为y=x2-x-2;

(2)①∵y=x2-x-2,
∴当y=0时,x2-x-2=0,解得x=-1或2,
∴y=x2-x-2与x轴交于点(-1,0),(-2,0).
当y=-1时,x2-x-2=-1,解得x=
∵y=x2-x-2=(x-2-
∴顶点为(,-),它关于直线y=-1对称点的坐标为(),
∴当x≤或x≥时,图象G的解析式不变,仍然为y=x2-x-2;
<x<时,图象G的解析式为y=-(x-2+,即y=-x2+x,
当y=0时,-x2+x=0,解得x=0或1,
∴如果点M(m,y1)在图象G上,且y1≤0时,-1≤m≤0或1≤m≤2;

②由图象可知,y≥4时,x2-x-2≥4,
解得x≤-2或x≥3.
∴m+k≤-2或m+k≥3,
又∵-1≤m≤0或1≤m≤2,
∴k≤-4或k≥4.
故答案为k≤-4或k≥4.
分析:(1)将A(3,4)代入y=ax2+(a-2)x-2,运用待定系数法即可求出抛物线的解析式为y=x2-x-2;
(2)①图象G的解析式分为两部分,当x≤或x≥时,y=x2-x-2,此时与x轴的两个交点为(-1,0),(2,0);当<x<时,根据对称性求出解析式为y=-(x-2+,即y=-x2+x,此时与x轴的两个交点为(0,0),(1,0).所以当点M(m,y1)在图象G上,且y1≤0时,可得m的取值范围是-1≤m≤0或1≤m≤2;
②先根据y2≥4求出自变量的取值范围是m+k≤-2或m+k≥3,又由①知-1≤m≤0或1≤m≤2,根据不等式的性质即可得出k≤-4或k≥4.
点评:本题是二次函数的综合题型,其中涉及到的知识点有运用待定系数法求抛物线的解析式,二次函数的性质,二次函数图象上点的坐标特征,二次函数与不等式的关系,对称轴与坐标轴平行时二次函数解析式的特点,不等式的性质,难度适中.运用数形结合是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

已知:抛物线y=x2-(a+b)x+
c2
4
,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为
3
,抛物线与x轴交于点P、Q,问是否精英家教网存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知:抛物线y=ax2+bx+c(a≠0)的图象经过点(1,0),一条直线y=ax+b,它们的系数之间满足如下关系:a>b>c.
(1)求证:抛物线与直线一定有两个不同的交点;
(2)设抛物线与直线的两个交点为A、B,过A、B分别作x轴的垂线,垂足分别为A1、B1.令k=
c
a
,试问:是否存在实数k,使线段A1B1的长为4
2
.如果存在,求出k的值;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•贵阳)已知:直线y=ax+b过抛物线y=-x2-2x+3的顶点P,如图所示.
(1)顶点P的坐标是
(-1,4)
(-1,4)

(2)若直线y=ax+b经过另一点A(0,11),求出该直线的表达式;
(3)在(2)的条件下,若有一条直线y=mx+n与直线y=ax+b关于x轴成轴对称,求直线y=mx+n与抛物线y=-x2-2x+3的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知:抛物线数学公式,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为数学公式,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2009年四川省绵阳市南山中学自主招生考试数学试卷(解析版) 题型:解答题

已知:抛物线,其中a、b、c是△ABC的∠A、∠B、∠C的对边.
(1)求证:抛物线与x轴必有两个不同交点;
(2)设直线y=ax-bc与抛物线交于E、F两点,与y轴交于点M,抛物线与y轴交于点N,若抛物线的对称轴为x=a,△MNE与△MNF的面积比为5:1,求证:△ABC是等边三角形;
(3)在(2)的条件下,设△ABC的面积为,抛物线与x轴交于点P、Q,问是否存在过P、Q两点且与y轴相切的圆?若存在,求出圆的圆心坐标,若不存在,请说明理由.

查看答案和解析>>

同步练习册答案