精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2-5ax+b(a≠0)与x轴有两个交点A(x1,0)、B(x2,0),与y轴交于点C,其中0<x1<x2,线段AB的长为3,O为坐标系原点,且有tan∠OAC=2,tan∠OBC=数学公式,求此二次函数解析式.

解:当x=0时,y=b.
∴C点坐标为(0,b),OC=|b|.
又∵A(x1,0)B(x2,0)0<x1<x2
∴OA=x1,OB=x2
tan∠OAC===2,∴x1=
tan∠OBC===,∴x2=2|b|.
∴x2-x1=2|b|-==AB=3,
∴|b|=2,b=±2.
∵抛物线y=ax2-5ax+b(a≠0)与x轴交于A(x1,0)、B(x2,0),且0<x1<x2
∴x1+x2=5,x1•x2=
∴(x2-x12=(x2+x12-4x1x2=25-=9,
∴a=
∴当b=2时,a=,当b=-2时,a=-
∴所求的抛物线的解析式为y=x2-x+2或y=-x2+ax-2,经检验知上述两条抛物线均符合题意.
分析:根据∠OAC和∠OBC的正切值,可用|b|表示出OB,OA的长,即x2,x1的值,根据AB=3,可求出|b|的值.
令y=0,可得出一个关于x的一元二次方程,根据韦达定理和AB=3即可求出a的值.由此可得出二次函数的解析式.
点评:本题主要考查了二次函数与一元二次方程的关系以及一元二次方程根与系数的关系.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

21、已知二次函数y=a(x+1)2+c的图象如图所示,则函数y=ax+c的图象只可能是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知二次函数y=ax+bx+c的图象与x轴交于点A.B,与y轴交于点 C.

(1)写出A. B.C三点的坐标;(2)求出二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年广东省广州市海珠区九年级上学期期末数学试卷(解析版) 题型:选择题

已知二次函数y=ax²+bx+c(a≠0)的图像如图所示,则下列结论中正确的是(   )

A.a>0             B.3是方程ax²+bx+c=0的一个根

C.a+b+c=0          D.当x<1时,y随x的增大而减小

 

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

已知二次函数y=ax+bx+c(a≠0,a,b,c为常数),对称轴为直线x=1,它的部分自变量与函数值y的对应值如下表,写出方程ax2+bx+c=0的一个正数解的近似值________(精确到0.1).
x-0.1-0.2-0.3-0.4
y=ax2+bx+c-0.58-0.120.380.92

查看答案和解析>>

科目:初中数学 来源: 题型:

已知二次函数y=ax²+bx+c(c≠0)的图像如图4所示,下列说法错误的是:

(A)图像关于直线x=1对称

(B)函数y=ax²+bx+c(c ≠0)的最小值是 -4

(C)-1和3是方程ax²+bx+c=0(c ≠0)的两个根

(D)当x<1时,y随x的增大而增大

查看答案和解析>>

同步练习册答案