精英家教网 > 初中数学 > 题目详情
如图,把图(1)中的⊙A经过平移得到⊙O(如图(2)),如果图(1)中⊙A上一点P的坐标为(m,n),那么平移后在图(2)中的对应点p′的坐标为
[     ]
A.(m+2,n+1)
B.(m-2,n-1)
C.(m-2,n+1)
D.(m+2,n-1)
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

科目:初中数学 来源:2009-2010学年北京市七年级下学期期末考试数学试卷(解析版) 题型:解答题

阅读下列材料:                                        

在学习小组,小明接到这样一个任务:把一个正方形分割成9个、10个和11个小正方形。为完成任务,小明先学习了两种简单的“基本分割法”。

基本分割法1:如图①,把一个正方形分割成4个小正方形,即在原来1个正方形的基础上增加了3个正方形.

    基本分割法2:如图②,把一个正方形分割成6个小正方形,即在原来1个正方形的基础上增加了5个正方形.

 

 

学习了上述两种“基本分割法”后,小明很从容地就完成了分割的任务:

(1)把一个正方形分割成9个小正方形.

方法一:如图③,把图①中的任意1个小正方形按“基本分割法2”进行分割,就可增加5个小正方形,从而分割成(个)小正方形.

方法二:如图④,把图②中的任意1个小正方形按“基本分割法1”进行分割,就可增加3个小正方形,从而分割成(个)小正方形.

(2)把一个正方形分割成10个小正方形.

如图⑤,把图①中的任意2个小正方形按“基本分割法1”进行分割,就可增加个小正方形,从而分割成(个)小正方形.

请你参照上述分割方法解决下列问题(只要求画图,不用说明分割方法):

(1)请你替小明同学把图⑥给出的正方形分割成11个小正方形;

(2)仿照基本分割法1:请把图a中的正三角形分割成4个小正三角形;

(3)仿照基本分割法2:请把图b 中的正三角形分割成6个小正三角形;

(4)分别把图c和图d中的正三角形分割成9个和10个小正三角形.

 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

数学活动课上,甲、乙两位同学在研究一道数学题:“已知:如图1,在△ABC和△DEF中,∠A=∠D=90°,∠B=50°,∠E=32°,且BC=EF.试画直线m,l,使直线m将△ABC分成的两个小三角形与直线l将△DEF分成的两个小三角形分别相似,并标出每个小三角形各内角的度数.”
甲同学是这样做的:如图2,使得两个直角三角形的斜边重合,以斜边中点0为圆心,OB长为半径作出辅助圆,根据到定点的距离等于定长的点在圆上,可知A、B(E)、C(F)、D在⊙0上.设BD所在的直线m与AC所在的直线l交于点G,根据同弧所对的圆周角相等,由∠ABC=50°,∠DEF=32°,易求得∠ABG=DFG=18°,再由∠A=∠D=90°,可求得∠AGB=∠DGF=72°,∠GCB=40°,∠BGC=108°,从而△AGB∽△DGF.△GBC∽△GEF.
乙同学在甲同学的启发下,利用辅助圆又补充了其它分割方法.
你看明白甲同学的分割方法了吗?请你仿照甲同学的方法,把这道题其它的所有分割方法补充完整.
要求:不需写解答过程.如图2所示.利用辅助圆画出示意图,标明直线及每个小三角形各内角的度数即可.

查看答案和解析>>

科目:初中数学 来源:北京模拟题 题型:解答题

已知正方形ABCD的边长为1,直线l1∥直线l2,l1与l2之间的距离为1,l1、l2与正方形ABCD的边总有交点。
(1)如图(1),当l1⊥AC于点A,l2⊥AC交边DC、BC分别于E、F时,求△EFC的周长;
(2)把图(1)中的l1与l2同时向右平移x个单位,得到图(2),问△EFC与△AMN的周长的和是否随x的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由;
(3)把图(2)中的正方形绕点O逆时针旋转α,得到图(3),问△EFC与△AMN的周长的和是否随α的变化而变化,若不变,求出△EFC与△AMN的周长的和;若变化,请说明理由。

查看答案和解析>>

同步练习册答案