精英家教网 > 初中数学 > 题目详情
10、有一批长度分别为1,2,3,4,5,6,7,8,9,10,11厘米的细木条,它们的数量足够多,从中适当选取3根木条作为三条边,可围成一个三角形,如果规定底边是11厘米长,你能围成多少个不同的三角形?
分析:根据三角形任意两边之和大于第三边,任意两边之差小于第三边即可求解.
解答:解:如果规定底边是11厘米长,则另两边长可取:
(1)11,11;11,10;11,9;11,8;11,7;11,6;11,5;11,4;11,3;11,2;11,1;共11种;
(2)10,10;10,9;10,8;10,7;10,6;10,5;10,4;10,3;10,2;共9种;
(3)9,9;9,8;9,7;9,6;9,5;9,4;9,3;共7种;
(4)8,8;8,7;8,6;8,5;8,4;共5种;
(5)7,7;7,6;7,5;共3种;
(6)6,6;共1种;
所以共能围成不同三角形为:1+3+5+7+9+11=36个.
点评:本题考查了三角形三边关系,难度一般,关键是掌握三角形任意两边之和大于第三边,任意两边之差小于第三边.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

有一批长度分别为1,2,3,4,5,6,7,8,9,10,11厘米的细木条,它们的数量足够多,从中适当选取3根木条作为三条边,可围成一个三角形,如果规定底边是11厘米长,你能围成多少个不同的三角形?

查看答案和解析>>

同步练习册答案