精英家教网 > 初中数学 > 题目详情

如图所示,∠BAC=∠ABD=90°,AC=BD,点O是AD,BC的交点,点E是AB的中点.
(1)图中有哪几对全等三角形?请写出来;
(2)试判断OE和AB的位置关系,并给予证明.

解:(1)△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;

(2)OE⊥AB.理由如下:
∵在Rt△ABC和Rt△BAD中,
∴△ABC≌△BAD,
∴∠DAB=∠CBA,
∴OA=OB,
∵点E是AB的中点,
∴OE⊥AB.
分析:(1)根据全等三角形的定义可以得到:△ABC≌△BAD,△AOE≌△BOE,△AOC≌△BOD;
(2)首先证得:△ABC≌△BAD,则OA=OB,利用等腰三角形中:等边对等角即可证得OE⊥AB.
点评:本题考查了全等三角形的判定与性质,以及三线合一定理,正确证明△ABC≌△BAD是关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图所示,∠BAC=90°,O为AB上一点,以O为圆心,
1
2
OA长为半径作⊙O,当AC绕点A逆时针旋转到与⊙O相切时,AC旋转过的角度α(0°<α<180°)为(  )
A、30°B、60°
C、60°或120°D、120°

查看答案和解析>>

科目:初中数学 来源: 题型:

5、如图所示,∠BAC=90°,AB=AC,过点A任意作一直线DE,且作CE⊥ED,BD⊥ED,经测量CE=2cm,BD=4cm,则DE的长为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图所示,∠BAC是⊙O的圆周角,则∠BAC+∠OCB=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

19、如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,点E是AB的中点.
(1)△CAB与△DAB全等吗?请说明理由;
(2)试判断OE和AB的位置关系,并给出证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

18、如图所示,∠BAC=∠ABD,AC=BD,点O是AD、BC的交点,
求证:△AOB是等腰三角形.

查看答案和解析>>

同步练习册答案